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Preface

The rapid development of Web technology has made the World Wide Web
an important and popular application platform for disseminating and
searching information as well as conducting business. However, due to the
lack of uniform schema for Web documents, the low precision of most
search engines and the information explosion on the World Wide Web, the
user is often flooded with a huge amount of information.

Unlike the conventional database management in which data models
and schemas are defined, the Web community, which is a set of Web-
based objects (documents and users) that has its own logical structures, is
another effective and efficient approach to reorganize Web-based objects,
support information retrieval and implement various applications. Accord-
ing to the practical requirements and concerned situations, the Web com-
munity would appear as different formats.

This book addresses the construction and analysis of various Web com-
munities based on information available from Web, such as Web document
content, hyperlinks, semantics and user access logs. Web community ap-
plications are another aspect emphasized in this book. Before presenting
various algorithms, some preliminaries are provided for better understand-
ing of the materials. Representative algorithms for constructing and ana-
lysing various Web communities are then presented and discussed. These
algorithms, as well as their discussions, lead to various applications that
are also presented in this book. Finally, this book summarizes the main
work in Web community research and discusses future research in this
area.

Acknowledgements
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1 Introduction

1.1 Background

The rapid development of Web technology has made the World WideWeb an
important and popular application platform for disseminating and searching
for information as well as conducting business.

As a huge information source, World Wide Web has allowed unprece-
dented sharing of ideas and information on a scale never seen before. The
boom in the use of the Web and its exponential growth are now well known,
and they are causing a revolution in the way people use computers and per-
form daily tasks. On the other hand, however, the Web has also introduced
new problems of its own and greatly changed the traditional ways of informa-
tion retrieval and management.

Due to the lack of uniform schema for Web documents, the low precision
of most search engines and the information explosion on the World Wide
Web, the user is often flooded with a huge amount of information. Because of
the absence of a well-defined underlying data model for the Web (Baeza-
Yates and B. Ribeiro-Neto 1999), finding useful information and managing
data on the Web are frequently tedious and difficult tasks, since the data on
the Web is usually represented as Web pages (documents).

Usually, the effectiveness and efficiency of information retrieval and man-
agement are mainly affected by the logical view of data adopted by informa-
tion systems. For the data on the Web, it has its own significantly different
features compared with the data in conventional database management sys-
tems. The features of Web data are as follows.

• The amount of data on the Web is enormous. No one could have exactly
estimated the data volume on the Web. Actually, the exponential growth of
the Web poses scaling issues that are difficult to cope with. Even the cur-
rent powerful search engine, such as Google, can only cover a fraction of
the total documents on the Web. The enormous data on the Web makes it
difficult to manage Web data using traditional database or data warehouse
techniques.
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• The data on the Web is distributed. Due to the intrinsic nature of the Web, 
the data is distributed across various computers and platforms, which are 
interconnected with no predefined topology. 

• The data on the Web is heterogeneous. In addition to textual data, which is 
mostly used to convey information, there are a great number of images, 
audio files, video files and applications on the Web. In most cases, the het-
erogeneous data co-exist in a Web document, which makes it difficult to 
deal with them at the same time with only one technique. 

• The data on the Web is unstructured. It has no rigid and uniform data mod-
els or schemas, and therefore there is virtually no control over what people 
can put on the Web. Different individuals may put information on the Web 
in their ways, as long as the information arrangement meets the basic dis-
play format requirements of Web documents, such as HTML format. The 
absence of well-defined structure for Web data brings a series of problems, 
such as data redundancy and poor data quality (Broder et al. 1997; Shiva-
kumar N. 1998). On the other hand, documents on the Web have extreme 
variation internal to the documents, and also in external meta information 
that might be available (Brin and L. Page 1998). Although the currently 
used HTML format consists of some structuring primitives such as tags and 
anchors (Abiteboul 1997), these tags, however, deal primarily with the 
presentation aspects of document and have few semantics. Therefore, it is 
difficult to extract required data from Web documents and find their mu-
tual relationships. This feature is quite different from that of traditional da-
tabase systems. 

• The data on the Web is dynamic. The implicit and explicit structure of the 
Web data may evolve rapidly, data elements may change types, data not 
conforming to the previous structure may be added, and dangling links and 
relocation problems will be produced when domain or file names change or 
disappear (Baeza-Yates and Ribeiro-Neto 1999). These characteristics re-
sult in frequent schema modifications that are another well-known head-
ache in traditional database systems (McHugh et al. 1997). 

• The data on the Web is hyperlinked. Unlike “flat” document collections, 
the World Wide Web is a hypertext and people are likely to surf the Web 
using its link graph. The hyperlinks between Web pages (data) provide 
considerable auxiliary information on top of the text of the Web pages and 
establish topological or semantic relationships among the data. This kind of 
relationship, however, is not in a predefined framework, which brings a lot 
of uncertainty, as well as much implicit semantic information, to the Web 
data. 

The above features indicate that Web data is neither raw data nor very 
strictly typed as in conventional database systems.  
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Because of the above Web data features, Web information retrieval and
Web data management are becoming a challenging problem. In the last sev-
eral years, much research and development work has been done in this area.
For this work, Web information search and management are always the main
themes. Accordingly, the research and development work could be roughly
classified into two main sub-areas: Web search engines and Web data man-
agement.

Web search engine technology has scaled dramatically with the growth of
the Web since 1994 to help Web users find desired information, and has re-
sulted in a large number of research results such as (McBryan 1994) (Brin
and L. Page 1998) (Brin and Page) (Cho et al. 1998) (Sonnenreich and Mac-
inta 1998) (Chakrabarti et al. 1999) (Chakrabarti et al. 1999) (Rennie J. and
A. McCallum 1999) (Cho and. 2000; Cho and Garcia-Molina 2000; Diligenti
et al. 2000; Hock 2000; Najork and Wiener 2001; Talim et al. 2001), as well
as various Web search engines such as World Wide Web Worm (WWWW),
Excite, Lycos, Yahoo!, AltaVista and Google. Search engines can beclassified
into two categories: one is general-purpose search engine and another one is
special-purpose search engine. The general-purpose search engines aim at
providing the capability of searching as many Web pages on the Web as pos-
sible. The search engines mentioned above are a few of the well-known ones.
The special-purpose search engines, on the other hand, focus on searching
those Web pages on particular topics. For example, the Medical World Search
(www.mwsearch.com) is a search engine for medical information and Movie
Review Query Engine (www.mrqe.com) lets the users to search for movie re-
views. No matter what category the search engine is, each search engine has a
text database defined by the set of documents that can be searched by the
search engine. The search engine should have an effective and efficient
mechanism to capture (crawl) and manage the Web data, as well as to provide
the capabilities to handling queries quickly and returning the most related
search results (Web pages) with respect to the user's queries. To reach these
goals, effective and efficient Web data management is necessary.

Web data management refers to many aspects. It includes data modeling,
languages, data filtering, storage, indexing, data classification and categoriza-
tion, data visualization, user interface, system architecture, etc. (Baeza-Yates
and B. Ribeiro-Neto 1999). In general, the purpose of the Web data manage-
ment is to find intrinsic relationships among the data to effectively and effi-
ciently support Web information retrieval and other Web-based applications.
It can be seen that there are intersections between the research in Web search
engines and Web data management. Effective and efficient Web data man-
agement is the base for a good Web search engine. On the other hand, the
data management could be applied to many other Web applications, such as
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Web-based information integration systems and metasearch engines (Meng et 
al. 2002). 

Although much work has been done in Web-based data management in the 
last several years, there remain many problems to be solved in this area be-
cause of the characteristics of the Web data mentioned before.  How to effec-
tively and efficiently manage Web-based data, therefore, is an active research 
area.  

1.2 Web Community  

As Web-based data management systems are a kind of information system, 
there is much work trying to use traditional strategies and techniques to estab-
lish databases and manage the Web-based data.  

For example, many data models and schemas have been proposed for man-
aging Web data (Papakonstantinou et al. 1995; McHugh et al. 1997; Bourret 
et al. 2000; Laender et al. 2000; Sha et al. 2000; Surjanto et al. 2000; Yoon 
and Raghavan 2000). Some of them tried to define schemas, which are similar 
to the conventional database schemas, for Web data, and use the conventional 
DBMS methods to manage Web data. Others tried other ways of establishing 
flexible data structures, such as trees and graphs, to organize Web data and 
proposed corresponding retrieval languages. However, since the Web data is 
dynamic, which is significantly different from the conventional data in data-
base systems, using relative fixed data schemas or structures to manage the 
Web data could not reflect the nature of the Web data (McHugh et al. 1997). 
On the other hand, the mapping of Web data into a predefined schema or 
structure would break down the contents of the Web data (text, hyperlinks, 
images, tags etc.) into separated information pieces, and intrinsic semantic re-
lationship within a Web page and among the Web pages would be lost. In 
other words, Web databases alone could not provide the flexibility to reflect 
the dynamics of the Web data and effectively support various Web-based ap-
plications. 

Unlike the conventional database management in which data models and 
schemas are defined, the Web community, which is a set of Web-based ob-
jects (documents and users) that has its own logical structures, is another ef-
fective and efficient approach to reorganize Web-based objects, support in-
formation retrieval and implement various applications. According to the 
practical requirements and concerned situations, Web community would ap-
pear as different formats. 

In this book, we focus on Web community approach, i.e. establishing good 
Web page communities, to support Web-based data management and infor-
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mation retrieval. A Web page (data) community is a set of Web pages that has
its own logical and semantic structures. For example, a Web page set with
clusters in it is a community; Web pages in a set that are related to a given
Web page also form a community. The Web page community considers each
page as a whole object, rather than breaking down the Web page into infor-
mation pieces, and reveals mutual relationships among the concerned Web
data. For instance, the system CiteSeer (Lawrence et al. 1999) uses search en-
gines like AltaVista, HotBot and Excite to download scientific articles from
the Web and exploits the citation relationships among the searched articles to
establish a scientific literature searching system. This system reorganizes the
scientific literature on the Web and improves the search efficiency and effec-
tiveness. The Web page community is flexible in reflecting the Web data na-
ture, such as dynamics and heterogeneity. Furthermore, Web page communi-
ties could be solely used by various applications or be embedded in Web-
based databases to provide more flexibility in Web data management, infor-
mation retrieval and application support. Therefore, database & community
centered Web data management systems provide more capabilities than data-
base-centered ones in Web-based data management.

1.3 Outline of the Book

This book will address the construction and analysis of various Web commu-
nities based on information available from Web, such as Web document con-
tents, hyperlinks, semantics and user access logs. Web community applica-
tions are also another aspect emphasized in this book. Before presenting
various algorithms, some preliminaries are provided for better understanding
of the materials. Then representative algorithms for constructing and analys-
ing various Web communities are presented and discussed. Thesealgorithms,
as well as their discussions, lead to various applications that are also pre-
sented in this book. Finally, this book will summarize the main work in Web
community research and discuss future research in this area. In this book, we
focus on Web community of Web documents or Web objects based on their
logical, linkage and inter-relationships. The user community and social issues
related to the usage of Web documents are not included. A separate volume is
planned and will be devoted to user community and recommendation design
based on user’s access patterns or usage logs.

The book contains eight chapters.
Chap. 2 will introduce some preliminary mathematical notations and back-

ground knowledge. It covers graph and matrix representation of hyperlink in-
formation among Web documents/objects, matrix decomposition such as sin-
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gular value decomposition, graph theory basis, Vector Space Model, and the 
Markov Model. 

Chap. 3 presents Hyperlink Induced Topic Search (HITS) algorithm, its 
variations and related approaches. 

Chap. 4 describes the popular page rank and related approaches. 
Chap. 5 presents affinity and co-citation approaches for Web community 

analysis, including matrix-based hierarchical clustering algorithms, Co-
Citation and extended algorithms etc.  

Chap. 6 presents graph-based algorithms and approaches for constructing 
Web communities, and discusses Web community evolution patterns. 

Chap. 7 introduces several techniques to either find Web communities or 
help analyze Web communities. This includes how to use user access patterns 
from Web log to explore Web community, how to use co-occurrence to 
enlarge Web communities, and also includes techniques for formal analysis 
and modeling of Web communities. 

Chap. 8 presents a summary and some future directions. 

1.4 Audience of the Book 

This book should be interesting to both academic and industry communities 
for research into Web search, Web-based information retrieval and Web min-
ing, and for the development of more effective and efficient Web services and 
applications. 

This book has the following features: 

• It systematically presents, describes and discusses representative algo-
rithms for Web community construction and analysis. 

• It highlights various important applications of the Web community. 
• It summarizes the main work in this area, and identifies several research di-

rections that readers can pursue in the future. 



2 Preliminaries

This chapter briefly presents some preliminary background knowledge for
better understanding of the succeeding chapters. The matrix model of hyper-
links is introduced in Sect. 2.1. Some matrix concepts and theories commonly
used in matrix-based analysis are presented accordingly, especially Sect. 2.2
introduces concepts of matrix eigenvalue and eigenvector; Sect. 2.3 mainly
introduces matrix norm, gives some commonly used matrix norms and their
properties; singular value decomposition (SVD) of matrix is discussed in Sect.
2.4. Similarity measure of two vectors in vector space is introduced in Sect.
2.5. The last two sections, Sect. 2.6 and 2.7 are dedicated respectively to
graph theory basics and the Markov chain.

2.1 Matrix Expression of Hyperlinks

The Matrix model has been widely used in many areas to model various ac-
tual situations, such as the relationship between a set of keywords and a set of
documents, where keywords correspond to the columns of a matrix and
documents correspond to the rows of the matrix. The intersection element
value of the matrix indicates the occurrence of a keyword in a document, i.e.
if a keyword is contained in a document, the corresponding matrix element
value is 1, and otherwise 0. Of course, the matrix element values could also
more precisely indicate the relationship between two concerned sets of ob-
jects. For example, for the keyword-document matrix, an element valuecould
indicate the weight of a keyword that occurs in a document, not just 1 or 0.
Similarly, for the pages in a concerned Web page set, such as the set of pages
returned by a search engine with respect to a user’s query or all the pages in a
Web site, the relationship between pages via their hyperlinks can also be ex-
pressed as a matrix. This hyperlink matrix is usually called an adjacency ma-
trix.

Without loss of generality, we can suppose the adjacency matrix is an m×n
matrix A = [aij]m×n. Usually, the element of A is defined as follows (Kleinberg
1999): if there is a hyperlink from page i to page j (i ≠ j), then the value of aij

is 1, and otherwise 0. For the situation i = j, the entry aij is usually set to 0.
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But in some cases, it could be set to other values depending on how the rela-
tionship from page i to itself is considered. For example, if aii is set to 1, it 
could mean that page i definitely has a relationship to itself. If this adjacency 
matrix is used to model the hyperlinks among the pages in the same page set, 
the values of parameters m and n are the same, which indicates the number of 
pages in the page set (set size). In this case, the ith row of the matrix, which is 
a vector, represents the out-link (i.e. the hyperlink from a page to other pages) 
relationships from page i to other pages in the page set; the ith column of the 
matrix represents the in-link (i.e. the hyperlink to a page from other pages) 
relationships from other pages in the page set to page i. 

However, if the adjacency matrix is used to model the hyperlinks between 
the pages that belong to two different page sets, the values of parameter m
and n usually are not the same unless the numbers of pages in these two sets 
are the same. Suppose one page set is A with the size of m, another page set is 
B with the size of n. In this case, the ith row of the adjacency matrix repre-
sents the out-link relationships from the page i in set A to all the pages in set 
B; the jth column of the matrix represents the in-link relationships from all the 
pages in set A to the page j in set B. 

Although the above adjacency matrix expression is intuitive and simple, 
the values of the matrix elements only indicate whether there exist hyperlinks 
between pages (i.e. value 1 of a matrix element indicates that there is a hyper-
link between two pages that correspond to this element, and value 0 indicates 
that there is no hyperlink between two pages). In hyperlink analysis, this ma-
trix expression can also be extended to represent semantics of hyperlinks. In 
this case, the values of the matrix elements are not required to be either 1 or 0. 
The actual element value depends on the particular situations where the ma-
trix expression is applied. For example, the correlations between pages can be 
expressed in a matrix, where the value of a matrix element aij, which is be-
tween 0 and 1, indicates the correlation degrees from page i to page j, and the 
matrix is non-symmetric. The similarity between pages can also be expressed 
in a matrix in a similar way, except that the similarity matrix is usually a 
symmetric one. The method of determining the matrix entries depends on 
how the relationship between the concerned objects and the application re-
quirements are modelled. In the following chapters, more examples of how to 
construct a matrix for different applications are presented. No matter which 
matrix will be constructed, the idea is the same, which is that the matrix 
model is a framework with the following requirements to be met: 

1. A data (information) space is constructed. For example, in a conventional 
database system, the data space might be the whole documents within it. In 
the context of Web, a data space might be a set of Web pages. But con-
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structing a data space for different Web application requirements is more
complex.

2. Two sets of information entities (objects), denoted as E1 and E2, within the
constructed data space are identified. One set should be a reference system
to another. That means the relationships between entities in E1 are deter-
mined by those in set E2, and vice versa. For example, E1 could be a set of
documents; E2 could be a set of keywords.

3. An original correlation expression between entities that belong to different
sets E1 and E2 is defined and modeled into a matrix. The correlation could
be conveyed by correlation information, such as keyword occurrence and
hyperlinks between pages.

From adjacency matrix, each page could be considered as a row or column
of the matrix. In other words, each page is represented as a vector. Therefore,
it is possible to use a vector model, which is usually used in traditional infor-
mation retrieval, to reveal relationships between pages, such as similarity and
cluster. Furthermore, it is also possible to find deeper and global relationships
among the pages through mathematical operations on the matrix, such as
computing eigenvalues and eigenvectors, and singular value decomposition.
The hyperlink matrix could also be directly used for other purposes, such as
Web page clustering through matrix permutation and partitioning. More de-
tails of matrix construction and applications in the context of the Web will be
seen in the succeeding chapters.

2.2 Eigenvalue and Eigenvector of the Matrix

Eigenvalue and eigenvector are two commonly used concepts in matrix model
application. Some basic knowledge of these two concepts is presented in this
section. For further details, readers could refer to linear algebra texts such as
(Golub and Loan 1993; Strang 1993; Datta 1995).

Let matrix A be an n×n matrix with real numbers as entries. An eigenvalue
of A is a number λ with the property that for some vector v, we have Av = λv.
Such a vector v is called an eigenvector of A associated with the eigenvalueλ.
The eigenvalue with maximum absolute value is called principal eigenvalue,
and its corresponding eigenvector is called principal eigenvector.

The set of all eigenvectors associated with a given eigenvalue λ forms a
subspace of Rn, and the dimension of this space will be referred to as the mul-
tiplicity of λ. If A is a symmetric matrix, then A has at most n distinct eigen-
values, each of them is a real number and the sum of their multiplicities is ex-
actly n. We denote these eigenvalues of matrix A by λ1(A), λ2(A), …, λn(A),
listing each a number of times equal to it multiplicity.
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For symmetric matrix A, if we choose an eigenvector vi(A) associated with 
each eigenvalue λi(A), then the set of vectors {vi(A) } forms an orthonormal 
basis of Rn, that is each vector is a unit vector and each pair of vectors is or-
thogonal, i.e. the inner product of each vector pair is 0.  

A matrix M is orthogonal if M TM = I, where M T denotes the transpose of 
the matrix M, and I denotes the identical matrix, i.e. a diagonal matrix with all 
diagonal entries equal to 1. If A is a symmetric n×n matrix, Λ is the diagonal 
matrix with diagonal entries λ1(A), λ2(A), …, λn(A), and M is the matrix with 
column equal to v1(A), v2(A), …, vn(A). Then it is easy to verify that M is an 
orthogonal matrix and we have MΛM T = A. Thus the eigenvalues and eigen-
vectors provide a useful “normal form” representation for symmetric square 
matrix in terms of orthogonal and diagonal matrices. In fact, there is a way to 
extend this type if normal form to matrices that are neither symmetric nor 
square, such as the singular value decomposition (SVD) of matrix that will be 
discussed later in this chapter. 

2.3 Matrix Norms and the Lipschitz Continuous Function 

A matrix norm, denoted by ||⋅||, is a measurement of a matrix. It is very similar 
to the absolute value definition of a real number. Informally and intuitively, a 
norm of two matrices’ difference ||A – B|| can be understood as the distance 
between these two matrices A and B.  

There are many ways to define a norm of a matrix. For a give matrix A, a 
matrix norm ||A|| is a nonnegative number associated with A. The norm should 
have the following properties: 

1. ||A|| > 0 when A ≠ 0 and ||A|| = 0 iif A = 0. 
2. ||kA|| = |k| ||A|| for any scalar k. 
3. ||A + B|| ≤ ||A|| + ||B||. 
4. ||AB||  ≤ ||A|| ||B||. 

Let A = (aij) be an m×n real matrix. The commonly used matrix norms are 
defined as follows: 

• Frobenius norm of a matrix A  

||A||F = ∑∑
= =

n

j

m

i
ija

1 1

2/12 ]||[ . 

•  1-norm of a matrix A  
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||A||1= ∑
=

≤≤

m

i
ij

nj
a

1
1

||max .

• ∞-norm of a matrix A

||A||∞ = ∑
=

≤≤

n

j
ij

mi
a

1
1

||max .

• 2-norm of a matrix A
||A||2 = (maximum eigenvalue of ATA)1/2.

||A||1, ||A||2 and ||A||∞ satisfy the following inequality

∞
≤ |||||||||||| 1

2
2 AAA .

The Lipschitz continuous function is an important function in function
analysis. We give its definition here for further reference in the following
chapters. Formally, a Lipschitz continuous function is a function f (x) that for
all x, y, we have |f (x) – f (y)| ≤ L |x – y|. L is called the Lipschitz constant.
This is certainly satisfied if f has a first derivative bounded by L. Note that,
even if f does not have uniformly bounded derivatives over the entire real
line, the theorem will also hold so long as the derivatives are bounded within
the applicable domain.

2.4 Singular Value Decomposition (SVD) of a Matrix

The singular value decomposition (SVD) of a matrix is defined as follow: let
A = nmija

×
][ be a real nm × matrix. Without loss of generality, we suppose

nm ≥ and the rank of A is rank(A) = r . Then there exist orthogonal matri-

ces mmU
×

and nnV
×

such that

TT VUVUA Σ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛Σ
=

0
1

(2.1)

where ),,...,(,, 11 nn
T

m
T diagIVVIUU σσ=Σ== 01 >≥

+ii σσ for

0,11 =−≤≤ jri σ for 1+≥ rj , Σ is a nm × matrix, TU and TV are the

transpositions of matrices U and V respectively, mI and nI represent

mm × and nn × identity matrices separately. The rank of A indicates the
maximal number of independent rows or columns of A. Equation (1) is called
the singular value decomposition of matrix A. The singular values of A aredi-
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agonal elements of Σ  (i.e. nσσσ ,...,, 21 ). The columns of U are called left 

singular vectors and those of V are called right singular vectors (Golub and 
Loan 1993; Datta 1995). For example, let 

23
43
32
21

×

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=A , 

then the SVD of A is TVUA Σ= , where

33
4082.05009.07632.0
8165.01735.05506.0

4082.08480.03381.0

×

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−=U ,    

22
5696.08219.0
8219.05969.0

×

⎟
⎠
⎞⎜

⎝
⎛ −=V , 

23
00

3742.00
05468.6

×

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=Σ

and the singular values of A are 6.5468 and 0.3742. 
The SVD could be used effectively to extract certain important properties 

relating to the structure of a matrix, such as the number of independent col-
umns or rows, eigenvalues, approximation matrix and so on (Golub and Loan 
1993; Datta 1995). Since the singular values of A are in non-increasing order, 
it is possible to choose a proper parameter k such that the last r-k singular 
values are much smaller than the first k singular values, and these k singular 
values dominate the decomposition. The next theorem reveals this fact. 

Theorem [Eckart and Young]. Let the SVD of A be given by equation 
(2.1) and U = [u1 , u2 , … , um], V = [v1 , v2 , … , vn] with 

),min()(0 nmArankr ≤=< , where iu , mi ≤≤1 is an m-vector, jv , 

nj ≤≤1 is an n-vector and  

.0...... 121 ===>≥≥≥
+ nrr σσσσσ

Let rk ≤  and define

T
ii

k

i
ik vuA ⋅⋅=∑

=

σ

1

. (2.2)

Then 

1. rank(Ak) = k ; 

2. 22
1

22

)(
...||||||||min rkFkFkBrank

AABA σσ ++=−=−
+

=

, 

3. 122)(
||||||||min

+
=

=−=− kkkBrank
AABA σ . 
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The theorem proof can be found in (Datta 1995). This theorem indicates
that matrix Ak, which is constructed from partial singular values and vectors
(see Fig. 2.1), is the best approximation to A (i.e. conclusions 2 and 3 of the
Theorem) with rank k (conclusion 1 of the Theorem). In other words, Ak cap-
tures the main structure information of A and minor factors in A are filtered.
This important property could be used to reveal the deeper relationships
among the matrix elements, and implies many potential applications provided
the original relationships among the considered objects (such as Web pages)
can be represented in a matrix. Since rk ≤ and only partial matrix elements
are involved in constructing Ak, the computation cost of an algorithm based
on Ak could be reduced.

Fig. 2.1. Construction of Approximation

The SVD of matrix was successfully applied in textual information retrieval
(Deerwester et al. 1990; Berry et al. 1995), and the corresponding method is
called Latent Semantic Indexing (LSI). In the LSI, the relationships between
documents and terms (words) are represented in a matrix, and SVD is used to
reveal important associative relationships between term and documents that
are not evident in individual documents. As a consequence, an intelligent in-
dexing for textual information is implemented. Papadimitriou et al
(Papadimitriou et al. 1997) studied the LSI method using probabilistic ap-
proaches and indicated that LSI in certain settings is able to uncover semanti-
cally “meaningful” associations among documents with similar patterns of
term usage, even when they do not actually use the same terms. This merit of
SVD, as indicated in its application to textual information retrieval, could also
be applied to Web data to find deeper semantic relationships provided the
Web data is correlated with each other through a certain correlation pattern,
such as a hyperlink pattern. The correlation pattern between the considered
objects (e.g. Web pages) is the base where the SVD is applied.
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2.5 Similarity in Vector Space Models 

We discuss the similarity here within a framework of vector space model, i.e., 
the concerned objects such as documents and Web pages are represented as 
vectors. These vectors could be rows/columns of a matrix, or just individual 
vectors.  

The representation of concerned objects by vectors in Euclidean space al-
lows one to use geometric methods in analyzing them. At the simplest level, 
the vector representation naturally suggests numerical similarity metrics for 
objects based on Euclidean distance or the vector inner product. The represen-
tative metric is the cosine measure which is defined as follow: let x and y be 
two vectors with the dimension m, their cosine similarity is  

||||
),(

yx

yx
yxsim

⋅

= , 

where the inner product x ⋅ y is the standard vector dot product defined as  

∑
=

=⋅

m

i
ii yxyx

1

, 

and the norm in the denominator is defined as  

xxx ⋅=|| . 
This similarity metric is named cosine similarity because it is simply the 

cosine of the angle between two vectors x and y.  
The above numerical similarity metric suggests natural approaches for 

similarity based indexing in information retrieval - by representing queries as 
vectors and searching for their nearest neighbours in a collection of concerned 
objects, such documents and Web pages, which are also represented as vec-
tors. The similarity could also be used for clustering. Of course, in any appli-
cation with a huge number of vector dimensions, these vector operations can 
be a problem not only from point of view of computational efficiency, but 
also because the huge dimension leads to sets of vectors with very spare pat-
terns of non-zeroes, in which the relationships among concerned objects can 
be difficult to detect or explore. Therefore, an effective method for reducing 
the dimension of the set of vectors without seriously distorting their metric 
structure offers the possibility of alleviating both these problems. 

2.6 Graph Theory Basics

A graph is a commonly used model for analyzing relationship between Web 
pages in terms of hyperlink. A graph G = (V, E) is defined as a set of nodes V
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and a set of edges E. Each element e ∈ E represents a connection between an
unordered node pair (u, v) in V. In the context of hyperlink, Web pages could
be modeled as nodes of a graph, and hyperlinks between pages as edges of the
graph.

A graph is connected if the node set cannot be partitioned into components
such that there are no edges whose connected nodes occur in different com-
ponents.

A bipartite graph G = (V1, V2, E) consists of two disjoint sets of nodes V1,
V2 such that each edge e ∈ E has one node from V1 and the other node from
V2. A bipartite graph is complete if each node in V1 is connected to every node
in V2. A matching is a subset of edges such that for each edge in the matching,
there is no other edge that shares a node with it. A maximum matching is a
matching of largest cardinality.

A weighted graph is a graph with a (non-negative) weight we for every
edge e. Given a weighted graph, the minimum weight maximum matching is
the maximum matching with minimum weight.

A directed graph is a graph with an edge being an ordered pair of nodes (u,
v), representing a connection from u to v. Usually the edge of an ordered pair
of nodes (u, v) in a directed graph is represented as an arrow from u to v. A
directed path is said to exist from u to v if there is a sequence of nodes u = w0,
…, wk = v such that (wi; wi+1) is an edge, for all i = 0, …, k-1. A directed cycle
is a non-trivial directed path from a node to itself. A strongly connected com-
ponent of a graph is a set of nodes such that for every pair of nodes in the
component, there is a directed path from one to the other. A directed acyclic
graph (DAG) is a directed graph with no directed cycles. In a DAG, a sink
node is one with no directed path to any other node.

More discussions of graph model in the context of the Web can be found in
(Broder et al. 2000). Many examples of graph model applications in Web
community analysis will be seen in the succeeding chapters.

2.7 Introduction to the Markov Model

A (homogeneous) Markov chain for a system is specified by a set of states S
= {1, 2, …, n} and an n×n non-negative, stochastic matrix M. A stochastic
matrix is a matrix satisfying that the sum of each row is 1. The system begins
in some start state in S and at each step moves from one state to another state.
This transition is guided by M: at each step, if the system is in state i, it moves
to state j with probability Mij. If the current state is given as a probability dis-
tribution, the probability distribution of the next state is given by the product
of the vector representing the current state distribution and M. In general, the
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start state of the system is chosen according to some distribution x, which is 
usually a uniform distribution, on S. 

After t steps, the state of the system is distributed according to xM t. Under 
some conditions on the Markov chain, from an arbitrary start distribution x, 
the system eventually reaches a unique fixed point where the state distribution 
does not change. This distribution is called the stationary distribution. It can 
be shown that the stationary distribution is given by the principal eigenvector 
y of M, i.e., M y = λ y where λ is the principal eigenvalue of M. In practice, a 
simple power-iteration algorithm can quickly obtain a reasonable approxima-
tion to y. 

In practical use, a random walk model based on a graph can also be repre-
sented as a Markov chain model under some assumptions. For example, a 
Web surfer surfs along hyperlinks between pages. If the surfer only takes one 
of two actions: going forward to another page along the hyperlink in the cur-
rent visiting page, or jumping randomly to other pages in the concerned page 
set, the surfer’s behaviour can be modelled as a Markov chain, where the 
states are the possibilities of pages the surfer might jump to. The final prob-
ability distribution of this Markov chain indicates the page ranks within the 
concerned Web page set. In a similar way, Markov chain can be used in many 
situations to establish simulation and analysis models. 



3 HITS and Related Algorithms

Hyperlink Induced Topic Search (HITS) is a representative of algorithms that
reveals Web page relationships conveyed by hyperlinks. It aroused investiga-
tion on constructing Web page community from hyperlink information. As
the beginning of Web community discussion, this chapter discusses this hy-
perlink-based algorithm, its improvements, variations, and related issues.
Some in-depth analyses of HITS are presented as well. Sect. 3.1 gives the
original algorithm of HITS. The stability issues of HITSare discussed in Sect.
3.2, which is the basis of further discussions in this chapter. Randomized,
subspace and weighted HITS are discussed respectively in Sect. 3.3, 3.4 and
3.5. In Sect. 3.6 and 3.7, two algorithms are discussed, which incorporate
page content information to improve HITS. Before discussing other HITS re-
lated algorithms, Sect. 3.8 gives an in-depth analysis of HITS from matrix
analysis point of view to reveal some features of HITS. After that, Sect. 3.9
discusses a special case of “nullification” in HITS, and gives another approach
to avoid this abnormality and improve HITSaccordingly. Sect. 3.10 gives an-
other way to improve HITSby eliminating noise pages from the page base set
of HITS, rather than directly tuning the HITS. In the last section of this chapter
Sect. 3.11, a stochastic approach SALSA is discussed to improve HITS.

3.1 Original HITS

The Hyperlink Induced Topic Search (HITS) algorithm is essentially a link-
based approach that intends to find authority and hub pages from a link in-
duced Web graph. Authorities are those pages that provide the best source of
information on a given topic, while hubs are those pages that provide collec-
tions of links to authorities (Kleinberg 1998). Hubs and authorities exhibit a
mutually reinforcing relationship: A good hub is a page that points to many
good authorities; a good authority is a page that is pointed to by many good
hubs. The algorithm was implemented by IBM Almaden Research Centre in
Clever, a prototype search engine, and was named the “Clever Algorithm” in
an article of Scientific American. This algorithm name is also used in some
research papers.
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The reason for conducting hyperlink analysis is that hyperlink structure 
contains an enormous amount of latent human annotation that can help auto-
matically infer notations of authority. Specifically, the creation of a hyperlink 
by the author of a Web page represents an implicit endorsement of the page 
being pointed to (Chakrabarti et al. 1999). We can get a better understanding 
of the relevance and quality of the Web’s contents by mining the collective 
judgment in the set of hyperlinks. 

The HITS algorithm consists of two main steps: focused sub-graph con-
struction and iterative calculation of authority and hub weight. 

Focused Sub-Graph Construction. The Web could be viewed as a di-
rected graph, with nodes representing pages and directed edges representing 
hyperlinks. Since an attempt to analyse the link structure of the entire Web 
would prove computationally costly and time consuming for a search topic 
that is specified by one or more query terms, the HITS algorithm is to be run 
on a sub-graph. This sub-graph is constructed from a set of pages S that ex-
hibit the following properties: 

• The set S is relatively small. 
• The set S is rich in relevant pages. 
• The set S contains most of the strongest authorities. 

For a query σ, the sub-graph construction starts with forming a root set Rσ. 
Initially, a collection of the top t pages, where t is typically set to 200, for the 
query σ is made from the results returned by the text-based search engineer-
ing such as AltaVista and Google. These top t pages form the root set Rσ. The 
root set satisfies the first two properties above, but usually does not satisfy the 
third. As Kleinberg observed, there are often extremely few links between 
pages in the root set. To increase the number of strong authorities in the sub-
graph, we can expand the root set Rσ to form the set of pages Sσ, from which 
the required sub-graph is constructed. 

The root set Rσ is expanded to form Sσ by including pages pointed to by or 
pointing to pages in the root set. All the pages pointed to by the pages in Rσ

are include in Sσ. A restriction for this procedure is that any page in Rσ can 
bring in at most d pages pointing to it. Here d is a predefined number, which 
was set to 50 in Kleinberg’s experiment (Kleinberg 1998). The resulting set 
Sσ is now referred to as the base set for the query σ. The experiments con-
ducted by (Kleinberg 1998) found the base set Sσ with t = 200 and d = 50 
typically possesses all three properties above and is generally 1000 - 5000 
pages. 

Once the base set has been grown, a sub-graph can be constructed. Within 
this sub-graph, two kinds of links should be considered. A link is considered 
as transverse if it is between pages with different domain names; a link is 
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considered as intrinsic if it is between pages with the same domain name at
the first level of the URL. As many intrinsic links in a particular site exist for
navigation purpose only, they convey less semantic information in determin-
ing authorities. By deleting all intrinsic links in the sub-graph, a focused sub-
graph Gσ for the query σ is constructed.

Iterative Calculation of Authority and Hub Weight. HITS associates
each page p in the sub-graph Gσ a non-negative authority weight x<p> and a
non-negative hub weight y<p>. The mutually reinforcing relationship between
authority and hub weights can be numerically expressed as follows: if a page
p points to many pages with large authority weights, then it should receive a
large hub weight; and if p is pointed to by many pages with large hub
weights, it should receive a large authority weight. Given weights x<p> and
y<p> for all pages in Gσ, this mutual relationship is realised by the following
two operations:

I operation updates the authority weights:

∑
→∀

><><
=

pqq

qp yx
:

,

where q→ p means page q points to page p.
O operation updates the hub weights:

∑
→∀

><><
=

qpq

qp xy
:

.

The operations are performed in an alternating way to find convergence.
The set of weights {x<p>} and {y<p>} can be expressed as vectors x and y re-
spectively. Each vector has a coordinate for each page in Gσ. To guarantee
convergence of the iterative operations, after each iterative operation, thevec-
tors x and y are normalized so that their squares sum to 1. This iterative calcu-
lation of authority and hub weight can be expressed in the following iterate
algorithm:

Iterate (G,k) {
G: a collection of n linked pages in the sub-graph Gσ

k: a natural number for the times of iterative operations
Let z denote the initial vector (1,1, …, 1) ∈ Rn

Set x0 = z
Set y0 = z
For i = 1,2, …, k {

Apply the I operation to (xi-1, yi-1) and obtain a new au-
thority weight vector x’i.
Apply the O operation to (x’i, yi-1) and obtain a new hub
weight vector y’i.
Normalize x’i and obtain xi.
Normalize y’i and obtain yi.
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} 
Return (xk, yk). 

} 

The pages with top c authority weights in xk are reported as authority 
pages, while the pages with top c hub weights in yk are reported as hub pages 
for the given query σ. In (Kleinberg 1998), the parameter c is typically set to 
10.  

There is also a more compact way to write I and O operations. Let us num-
ber the pages {1,2,…, n} and define their adjacency matrix A to be the n×n
matrix whose (i.j)th entry is equal to 1 if page i links to page j, or 0 otherwise. 
We write the set of all authority values as a vector x=(x1, x2, …, xn) and the set 
of all hub values as an another vector y=(y1, y2, …, yn). Then the I and O op-
erations can be written respectively as  

x = ATy, y = Ax. 
Unwinding these one-step operations further, we get  

x = ATy = (ATA)x, y = Ax = (AAT)y. 
Thus, after multiple iterations, the vector x is precisely the result of apply-

ing the power iteration operations to the matrix ATA. As indicated by linear 
algebra theory (Golub and Loan 1993), this sequence of iterations, when 
normalized, converges to the principal eigenvector of ATA. Similarly, the se-
quence of values for the normalized vector y converges to the principal eigen-
vector of AAT.  

3.2 The Stability Issues 

The initial results of the HITS algorithm were promising in some cases (Bharat 
and Henzinger 1998; Kleinberg 1998; Chakrabarti et al. 1999; Borodin et al. 
2001). However, there are still stability issues with this algorithm to be ad-
dressed and solved.  Mainly these issues are: topic drift, mutually reinforcing, 
topic variety, and topic generalization. 

Topic Drift. Topic drift is a phenomenon where the highly ranked authori-
ties and hubs are not relevant to the original query topic. For example, 
(Bharat and Henzinger 1998)ran the HITS algorithm on the query “jaguar and 
car”, the computation drifted to the general topic “car” and returned the home 
pages of different car manufacturers as top authorities and lists of car manu-
facturers as the best hubs. It was found through experimentation (Bharat and 
Henzinger 1998) that the base set of HITS contains pages not relevant to the 
query topic. If these pages are well connected or more strongly intercon-
nected, they will dominate the HITS operation and the topic drift occurs. A 
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striking example of this phenomenon is provided by (Cohn and H 2000).
They applied the HITSalgorithm to the query topic “jaguar”. The operation re-
turned a collection of pages about services in Cincinnati. The cause of this
behaviour is the Cincinnati Enquirer newspaper, which has many articles
about the Cincinnati Bengals and Jacksonville Jaguars football teams. Each
article contains the same set of pointers to services provided by the newspa-
per.

Mutual Reinforcing Occurs. Mutually reinforcing occurs between hosts
where a set of pages on one host point to a single page on a second the host.
This inflates the authority value of the single page, and subsequently im-
proves the hub values of those pages that reference it. The reverse can also
occur if a single page on a host points to many pages on another host. As the
page has a large out-degree it gains an unduly large hub value. This subse-
quently increases the authority score of every page it links to. The mutually
reinforcing occurs typically because designers of individual Web page copy
the page design from a master copy which contains the links.

Topic Variety. Chakrabarti et al (Chakrabarti et al. 1999) noticed that if a
page has discussion on various topics within the same page, then the outgoing
links will link to different topics depending on their position within the initial
page. If this page has a large out-degree, it will receive a large hub weight
that flows on a high authority weights for referenced pages regardless of their
relevance to the initial query topic.

Topic Generalization. This issue was raised by (Chakrabarti et al. 1999),
which was also addressed by (Kleinberg 1998) and (Gibson et al. 1998). If the
query topic is too narrow, then the HITSalgorithm frequently returns good re-
sources for more general topics. For example, for the query topic “jaguar and
car” the HITS yielded the results, where the general topic “car” overwhelms
the more specific query. This behaviour is sometimes reversed. The reversal
occurs when the returned list of pages is dominated by more specific pages.
This set of specific pages exhibits a greater density of linkage within its
neighborhood of the Web graph and thus the HITSalgorithm converges on it.

These stability issues of the HITS algorithm shows that the purely link
based approach is not without its drawbacks. Therefore, after the HITS was
proposed, much work has been done to improve it or combine it with other
approaches. These HITS variations are discussed in the following sections.
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3.3 Randomized HITS 

Considering the hyperlinks between pages as the random walk paths for Web 
surfers (users), (Ng et al. 2001)proposes an improved HITS algorithm named 
randomized HITS.  

This algorithm is based on an assumption that there is a random surfer who 
is able to follow hyperlinks both forwards and backwards. More precisely, the 
surfer starts from a randomly chosen page, and visits a new Web page at 
every time step. Every time step, with the probability of ε, he jumps to a new 
Web page chosen uniformly at random; otherwise, he checks if it is an odd 
time step or an even time step. If it is an odd time step, he then follows a ran-
domly chosen out-link from the current page; if it is an even time step, then 
he traverses a random in-link of the current page. Thus, the random surfer al-
ternately follows links forwards and backwards, and occasionally (with the 
probability of ε) “resets” and jumps to a page chosen uniformly at random. 

This process simulates a random walk on Web pages, and the stationary 
distribution on odd time steps is defined to be the authority weights. Intui-
tively, let t be a very large odd number, the authority weight of a page is the 
chance that the surfer visits that page on time step t. Similarly, the stationary 
distribution on even time steps is defined to be the hub weights. These quanti-
ties can also be written in the following mathematical expressions: 
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is the vector of all ones, rowA  is the same as adjacency matrix A in 

Sect. 3.1 with its rows normalized to sum to 1, and colA  is A with its columns 

normalized to sum to 1. This iteration operation is similar to the original HITS. 
(Ng et al. 2001) indicated that iterating these equations will cause x(t) and y(t)

to converge to the odd-step and the even-step stationary distributions.  
The experimental results in (Ng et al. 2001) empirically show that this al-

gorithm produces more stable results than the original HITS on both academic 
citation and Web query data. The result stability means some minor changes 
to the linkage structure of base set could not dramatically change authority 
and hub weights of the pages. The above randomized HITS improves the sta-
bility of the original HITS algorithm, i.e. the randomized HITS is insensitive to 
small perturbations. 
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3.4 Subspace HITS

This algorithm, which was proposed by (Ng et al. 2001), is another way of
improving the stability of HITS. As indicated in Sect. 3.1, the final authority
vector x and hub vector y of the HITSalgorithm are the principal eigenvectors
of matrices ATA and AAT respectively. Sometimes, however, individual eigen-
vectors of a matrix may not be stable, but subspaces spanned by eigenvectors
may be. Theoretically, if the eigengap between the k-th and k+1-st eigenval-
ues is large, then the subspace spanned by the first k eigenvectors will be sta-
ble (Stewart and JG 1990). That’s the base of constructing a subspace that is
spanned by some eigenvectors to obtain authority scores instead of examining
eigenvectors individually.

The subspace HITS algorithm for calculating authority scores (or hub
scores) is described as the following procedure (Ng et al. 2001), where f (⋅) is
a non-negative, monotonically increasing function that will be specified later:

1. Find the first k eigenvectors v1, …, vk of ATA (or AAT for hub weights), and
their corresponding eigenvalues λ1, …λk. In the case of repeated eigenval-
ues, the eigenvectors are chosen orthogonal to each other.

2. Let ej be the j-th basis vector (whose j-th element is 1, and all other ele-
ments 0). Calculate the authority scores

2

1
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This is the square of the length of the projection of ej onto the subspace
spanned by v1, …, vk, where the projection in the vi direction is “weighted”
by f (λi).

There are many choices for function f :

• If we define f (λ) = 1 when λ ≥ λmax and f (λ) = 0 otherwise, we get back
the original HITS algorithm;

• If we take k = n, here n is the number of pages in the base set, and f (λ) = λ,
this choice corresponds to simple citation counting;

• If we define f (λ) = 1, the authority scores depend only on the subspace
spanned by the k eigenvectors.

For computational reasons, it is practical to use k < n eigenvectors as an
approximation to using the full set, which drops the eigenvectors with the
smallest weights. In the experiments of (Ng et al. 2001), k = 20 and function f
is defined as f (λ) = λ

2.
This method gives a way of automatically combining multiple eigenvectors

into a single measure of authoritativeness for each page. In general, subspaces
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are more stable than individual eigenvectors (see (Stewart and JG 1990)), and 
therefore it is reasonable to expect that Subspace HITS will do better than HITS 
in certain cases. The experimental results presented in (Ng et al. 2001) dem-
onstrate this expectation, in which the results returned by subspace HITS are 
more stable than those returned by HITS.  

(Ng et al. 2001) also theoretically proved that the subspace HITS algorithm 
is stable, i.e. for the minor perturbation of matrix ATA (or AAT for hub 
weights), the effect of this perturbation to the authority scores (or hub scores) 
can be bounded within a small area. The following theorem (Ng et al. 2001) 
illustrates this fact:  

THEOREM. Let f be Lipschitz continuous with Lipschitz constant L, and 
let k = n. Let the matrix S = ATA  be perturbed according to S’ = S + E, 
where ||E||F = ε (E is symmetric, ||⋅||F is the Frobenius norm of a matrix). 
Then the change in the vector of authority scores is bounded as follows: 

||x – x’||2 ≤ Lε. 
The proof of the theorem is given in (Ng et al. 2001). 

3.5 Weighted HITS 

The HITS algorithm performs well in some cases, but it ignores the text in 
Web pages that describe the query topics. (Chakrabarti et al. 1998) proposed 
an improvement of HITS by incorporating text around the <a href > tags of a 
page. The text is used to weight the links between pages. This weighted HITS 
contains two modifications of the original HITS: the first one is modification 
of the focused sub-graph construction, and the second one is weighted adja-
cency matrix. 

As stated in Sect. 3.1, the focused sub-graph construction contains two 
steps: gathering topic related pages returned by a search engine to form a root 
set; expanding the root set to form a base set by adding pages that are pointed 
to by and point to pages in the root set. (Chakrabarti et al. 1998) improved 
this construction by using the second step twice and called the page set ob-
tained in this way the augmented set rather than the base set. Therefore, the 
augmented set includes all pages that are link-distance two or less from at 
least one page in the root set. As indicated in (Chakrabarti et al. 1998), the 
augmented set contained between a few hundred and 3000 distinct pages, de-
pending on the query topic. 

The HITS algorithm can be expressed as iteration operations based on the 
adjacency matrix which entries are either 1 or 0. In practice, it is very likely 
that the text around the <a href> tag that introduces a link to a page p is de-
scriptive of the contents of p, while the <a href> tag is not in p but in pages 
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pointing to p. It is reasonable to assume that if a text descriptive of the query
topic occurs in the text around an <a href> tag in a good hub, it will enforce
our believe that a page pointed to by this link is an authority on the topic.
Therefore, this kind of link should have a larger weight than other links, and
the corresponding entry value in the adjacency matrix should be more than 1.
The idea of incorporating text in (Chakrabarti et al. 1998) is to look on either
side of the href tag for a window of B bytes, where B is 50 which is deter-
mined through experiments. This text range is called the anchor window,
which includes the text between the <a href = “…”> and </a> tags. Suppose
there is a link from page p to q, let n(t) denote the number of matches be-
tween terms in the query topic description and those in the anchor window,
then the entry value of the adjacency matrix A is modified as

A(i, j) = 1 + n(t),
where a term is specified as a contiguous string of words.

(Bharat and Henzinger 1998) proposed another weighted HITS, addressing
the mutually reinforcing relationships issue indicated in Sect. 3.2. Mutually
reinforcing relationships between hosts gives undue weight to the opinion of a
single page. Therefore, it is ideal that all the pages on a single host have the
same influence on the page they are connected to, as a single page would. To
this end, (Bharat and Henzinger 1998) gave fractional weights to links in the
following way.

If there are k hyperlinks from pages on the first host to a single page on the
second host, each link is given an authority weight of 1/k. This weight is used
when computing the authority score of the page on the second host. Similarly,
if there are l links from a single page on the first host to a set of pages on the
second host, each link is given a hub weight of 1/l, which is used when com-
puting the hub score of the page on the first host. Additionally, the isolated
pages in the base set are discarded. This leads to the following weighted HITS:

Weighted I operation, updating the authority weights

),(_
:

pqweightauthyx
pqq

qp
×= ∑

→∀

><>< .

Weighted O operation, updating the hub weights

),(_
:

qpweighthubxy
qpq

qp
×= ∑

→∀

><>< .

The vectors x and y are normalized after each iteration. Similar to the
proof in (Kleinberg 1998), (Bharat and Henzinger 1998) also proved that this
weighted HITS converges, i.e., that the algorithm terminates after finite steps
of iteration operations. The experimental results presented in (Bharat and
Henzinger 1998) demonstrated that this weighted algorithm was effective in
eliminating the mutually reinforcing relationship problem in all the cases
where they are encountered.
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Although Bharat’s weighted algorithm in (Bharat and Henzinger 1998) im-
proves the original HITS, there are still some cases where these algorithms 
could not get satisfactory results. (Li et al. 2002) investigated a case of so 
called small-in-large-out links, which means a root page has few in-links but 
a large number of out-links to pages that are not relevant to query topics. (Li 
et al. 2002) gave a simple query cruises. All of the top 10 authorities are from 
the out-links of a root page www.cyprus-cruises.com, which has only 1 in-link 
but 271 out-links, most of which are in different domains; while the average 
in-degree and out-degree of the root set link are 34 and 17 respectively. The 
top 3 to top 10 hubs are from another root page cyprus-car-hire.com, which is 
also an out-link of the root page www.cyprus-cruises.com. (Li et al. 2002) no-
ticed that these two root pages and their hyperlink neighborhood form a 
tightly-knit community. The hub value of the root page www.cyprus-
cruises.com dominates the iteration operations of the Bharat’s weighted HITS 
algorithm. As a result, the documents it points to get the largest authority val-
ues. Consequently, the in-links of root page cyprus-car-hire.com get the top 
hub values because it is assigned the largest authority value. It was found in 
(Li et al. 2002) that most of the hubs and authorities are of very low relevance 
to the query cruises. The major problem of the above example is that the root 
page www.cyprus-cruises.com has small-in-large-out links compared with the 
average in-degree and out-degree of root pages. 

Without content analysis, both Bharat’s weighted HITS and HITS can not 
solve the above problem as most out-links of a small-in-large-out link are in 
different domains. To solve this kind of problem, (Li et al. 2002) modified the 
HITS algorithm as another weighed HITS algorithm, in which the two-step it-
eration operations are as follows. 

• For all pages j in the base set that points to page i, 

∑ ⋅=

j
jai hwa

j
. 

• For all pages j in the base set that is pointed to by page i, 

j
j

hi awh
j
⋅=∑ . 

In the first equation, the value of hj can be HITS hub weight, Bharat’s HITS 
hub weight, or the hub weight of other HITS-based algorithms. This notation 
similarly applies to the value of aj in the second equation.  

In (Li et al. 2002), all the 
jhw  values are set to 1. The setting of 

jaw  con-

sists of two parts: 
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1. Before starting a HITS-based algorithm, if there exists a root page whose
in-degree is among the three smallest ones and whose out-degree is among
the three largest ones, then set

jaw to 4 for in-links of all the root pages.

2. Otherwise, set all
jaw to 1. Run the HITS-based algorithm for one iteration

without normalization. If there exists a root page whose authority value is
among the three smallest ones and whose hub value is among the three
largest ones, set

jaw to 4 for in-links of all the root pages.

According to (Li et al. 2002), in the above two steps, usually the in-degree
of a small-in-large-out link is as small as 0, 1, or 2, while the out-degree can
be more than several hundred. Intuitively, in most cases, it is hard to believe
that a root page with no or few in-links can point to many highly relevant
documents. Even if it points to many good documents, due to the large num-
ber of documents in the base set, there may be some duplicates between the
out-links of the small-in-large-out link and the neighbourhood of other pages,
and these well duplicated documents still have the chance to top the hub set or
the authority set. The method of setting in-link weights is very simpleand can
be further improved by adaptively changing the weights of both in- and out-
links of a small-in-large-out link.

The experimental results obtained by (Li et al. 2002) show that the top 10
authorities and top 10 hubs from the above weighted algorithm combining
with Bharat’s weighted HITS are much better than those from pure Bharat’s
weighted HITS.

3.6 The Vector Space Model (VSM)

The vector space model has been widely used in traditional information re-
trieval. With this model, a space is created in which both pages and queries
are represented by vectors. Particularly, for a collection of pages, an m-
dimensional vector is generated for each page and each query from a set of
terms with associated weights, where m is the number of unique terms in the
page collection. Then, a vector similarity function, such as the inner product,
can be used to compute the similarity between a page and a query.

Since vector space model refers to the contents of pages, it is natual to ap-
ply this values model to improve the HITS algorithm by adding semantic in-
formation into it. Actually, if ri is the relevance/similarity score of a Web
page i to the query that is calculated by vector space model, and hi is the hub
value of the page i, ri⋅hi instead of hi is used to compute the authority of pages
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it points to. Similarly, if ai is its authority value, ri⋅ai instead of ai is used to 
compute the hub values of pages that point to it. 

In VSM, weights associated with the terms are calculated based on the fol-
lowing two numbers: 

• term frequency, fij, the number of occurrence of term j in page i; and 
• inverse document frequency, gj = log(N/dj ), where N is the total number of 

pages in the collection and dj is the number of pages containing term j. 

The similarity sim(q, i), between a query q and a page i, is defined as the 
cosine similarity of the query vector Q=(q1, q2, …, qm) and the page vector Xi 

= (xi1, xi2, …, xim): 
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Due to the dynamic nature of the Web and inability to access the whole 
Web, the VSM method cannot be applied directly because the inverse docu-
ment frequency gj is not available as N and dj are often unknown for the pages 
on the Web.  (Li et al. 2002) summarized three ways of dealing with this 
problem: 

1. making simple assumptions, such as gj is a constant for all the pages;  
2. estimating parameter values by sampling the Web; and  
3. using information from search engines, or/and experts' estimates.  

In (Li et al. 2002), a combination of the second and third approaches was 
used. In that work, the Web is treated as a big database. To estimate N, the 
coverage of Google is used, which achieved 1,387,000,000 pages in August 
2001. Thus, we can set N = 1,387,000,000. To estimate dj, the number of 
pages containing a certain term j, (Li et al. 2002) used information extracted 
from several search engines as follows: 

• Submit the term j to several search engines. Each search engine i returns 
αi, the number of pages containing the term. 

• Calculate the normalized value γi for each search engine i, based on αi and 
the relative size βi of the search engine to that of the whole Web: γi = αi /βi. 
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As reported in 2002 (Li et al. 2002), the sizes of the five commonly used
search engines, AltaVista, Fast, Google, HotBot, and NorthernLight, are
550, 625, 1000, 500, and 350 million pages, respectively. Since the total
size of the Web is estimated to be about 1.387 billion pages, the relative
sizes βi of these search engines are 0.397, 0.451, 0.721, 0.360, and 0.252,
respectively.

• Take the median of the normalized values of the search engines as the final
result.

After getting the values of N and dj, similarity/relevance score of a page to
the query can be easily computed from the above formula.

Still using term vectors to determine the relevance scores between pages
and query topic, the (Bharat and Henzinger 1998) used these relevancescores
in different way to tackle the topic drift problem in the original HITS algo-
rithm. In that method, the pages in the root set are used to define a broader
query, instead of using the original query terms. Specifically, the first 1000
words from each page in the root set are concatenated to be a query (Bharat
and Henzinger 1998). Then the pages are matched against this broader query
based on their term vector similarities/relevance to the query. Thesimilarity is
defined in the same way as the above, but with a little bit difference. Instead
of incorporating relevance scores into the HITS, (Bharat and Henzinger 1998)
used these relevance scores to eliminate pages from the focused graph. All
pages whose scores are below a threshold are pruned, then HITSor other HITS
based algorithms are applied to this pruned graph. Thresholds are picked in
one of three ways as follows (Bharat and Henzinger 1998):

1. Median Score: The threshold is the median of all the relevance scores.
2. Root Set Median Score: The threshold is the median of the relevance

scores of the pages in the root set.
3. Fraction of Maximum Score: The threshold is a fixed fraction of the

maximum score, such as max/10.

Readers who are interested in the details and experimental results of this
method could refer to (Bharat and Henzinger 1998).

3.7 Cover Density Ranking (CDR)

The idea of using this method in improving HITS is the same as that of using
VSM. However, instead of computing the relevance scores from term appear-
ance, cover density ranking (CDR) is based on the appearance of phrases. CDR
is more concerned with the relationship between the terms, rather than the
terms individually. The idea is that a document containing most or all of the
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query terms should be ranked higher than a document containing fewer terms, 
regardless of the frequency of term occurrence (Wilkinson et al. 1995). Be-
fore discussing CDR, we give the definition of cover first. A cover is an or-
dered pair (pj, qj) over a document, specifying the shortest interval of two dis-
tinct terms in the document (Clarke et al. 2000). pj is the position of one term, 
qj the position of another term, and qj is assumed to be larger than pj.  

In CDR, the results of phrase queries are ranked in the following two steps 
(Clarke et al. 2000): 

1. Documents containing one or more query terms are ranked by coordination 
level, i.e., a document with a larger number of distinct query terms ranks 
higher. The documents are thus sorted into groups according to the number 
of distinct query terms each contains, with the initial ranking given to each 
document based on the group in which it appears. 

2. The documents at each coordination level are ranked to produce the overall 
ranking. The score of the cover set ω = {(p1, q1), (p2, q2), …, (pn, qn)} is 
calculated as follows: 
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where λ is a constant such as 16 in (Li et al. 2002). Covers of length λ or 
shorter are given score 1, and longer covers are assigned scores less than 1 in 
proportional to the inverse of their lengths. 

To adapt CDR to the Web, (Li et al. 2002) first finds out how many distinct 
query terms a page has and ranks the pages with more distinct terms higher. 
The method using CDR to compute the relevance scores of pages contains two 
steps: 

1. Pages are scored according to the regular CDR method. Each page belongs 
to a coordination level group and has a score within that group. 

2. The scores are normalized to range (0, 1] for pages containing only one 
term, to range (1, 2] for pages containing two different terms, and so on. 

The benefit of this method is that it not only considers the number of dis-
tinct terms in a page, but also how these distinct terms appeared in the page, 
such as how close they are (Li et al. 2002). 
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3.8 In-depth Analysis of HITS

The original HITSand other improved HITSalgorithms are all based on the to-
pology information conveyed by hyperlinks. Then comes another problem:
does an algorithm return similar results upon a small perturbation of the link
structure or the page collection? This problem refers to the stability of a link
analysis algorithm and should be paid attention to. This is because in the con-
text of the Web, due to the dynamic feature of the Web, the Web may give us
different views of the topology structure on different occasions. Ideally, a link
analysis algorithm should be insensitive to hyperlink perturbations, i.e. if
some pages are truly authoritative or influential, the addition or deletion of a
few links should not make us change our minds about these pages having
been very influential.

Actually, HITSuses matrix eigenvector calculations to assign “authority” or
“hub” weights to pages. Therefore, the stability of HITSand other HITSbased
algorithms is turned out to be the eigenvector stability to the matrix perturba-
tions. One of the examples regarding to this stability problem was given in
(Ng 2001). This simple example showed how a small addition to a collection
of Web pages could result in a large change to the eigenvectors returned. (Ng
2001) supposes there is a collection of Web pages that contains 100 Web
pages linking to http://www.algore.com, and another 103 Web pages linking
to http://www.georgewbush.com. The adjacency matrix A has all zeros except
for the two columns corresponding to these two Web pages, therefore the
principal eigenvector a* will have non-zero values only for algore.com and
georgewbush.com. Fig. 3.1 (Ng et al. 2001) (a) presents a jittered scatterplot
of links to these two Web pages, along with the first two eigenvectors (only
the non-zero portions of the eigenvectors are shown). Now, suppose five new
Web pages trickle into the collection, which happen to link to both al-
gore.com and georgewbush.com. Fig. 3.1(b) shows the new plot, and we see
that the eigenvectors have changed dramatically, with the principal eigenvec-
tor now near the 45° line. Thus, a relatively small perturbation to the collec-
tion has caused a large change to the eigenvectors. (Ng et al. 2001) also indi-
cated that a smaller number of pages that trickle into the collection also
resulted in relatively large swings of the eigenvectors. For example, 1, 2, 3, 4
pages cause the principle eigenvectors to lie at 73°, 63°, 58° and 55° respec-
tively. If this phenomenon is pervasive, then it needs to be addressed by any
algorithm that uses eigenvectors to determine authority.
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Fig. 3.1. Jittered scatterplot of hyperlink graph 

HITS uses the principal eigenvector of matrix S = ATA to determine authori-
ties. In (Ng 2001), it is shown that the stability of this eigenvector under small 
perturbations is determined by the eigengap of S, which is defined to be the 
difference between the largest and the second largest eigenvalues. The fol-
lowing example gives an intuitive view of the importance of the eigengap in 
determining eigenvector stability. Fig. 3.2  (Ng et al. 2001) plots the contours 
associated with two matrices S1 and S2 before (with solid lines) and after (with 
dashed lines) the same additive perturbation has been made to them. The ei-
genvalues of the matrices are indicated by the directions of the principal axes 
of the ellipses (Ng 2001).  

Fig. 3.2. Contours of two matrices with different eigengaps 

The matrix S1 shown in Fig. 3.2(a) has eigengap δ1 ≈ 0, and a small pertur-
bation to S1 (and hence the ellipse) results in eigenvectors away from the 
original eigenvectors; the matrix shown in Fig. 3.2(b) has eigengap δ2 = 2, 
and the perturbed eigenvectors are nearly the same as the original eigenvec-
tors. It can be seen from this example that the size of the eigengap directly af-
fects the stability of the eigenvectors.  
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In the following discussion, we use a tilde to denote perturbed quantities

(e.g. S
~

denotes a perturbed version of S). Theorem 1 below reveals a fact that
when the eigengap is large, the HITSis insensitive to small perturbations (Ng
2001).

Theorem 1. Let S = ATA be given. Let a* be the principal eigenvector and
δ the eigengap of S. Assume the maximum out-degree of every Web page is
bounded by d. For any ε > 0, suppose we perturb the Web/citation graph by
adding or deleting at most k links from one page, where

2)( ddk −+< α , where )24/( εεδα += . Then the perturbed prin-

cipal eigenvector *~a of the perturbed matrix S
~

satisfies:

ε≤− 2
** ||~|| aa (3.1)

This theorem also applies directly to hub weight calculations in which S =
AAT. This result is proved by showing i) the direction of the principal eigen-
vector does not change too much, and ii) the magnitudes of the relevant ei-
genvalues do not change too much, so the second eigenvector does not “over-
take” the first and become the new principal eigenvector. (Ng 2001) gives the
proof of this theorem as follows.

Proof. Let ||⋅||F denote the Frobenius norm. We apply Theorem V.2.8 from
matrix perturbation theory (Stewart and JG 1990): Suppose S ∈ Rn×n is a
symmetric matrix with principal eigenvalue λ* and eigenvector a*, and ei-
gengap δ > 0. Let E be a symmetric perturbation to S. Then the following ine-
qualities hold for the old principal eigenpair (λ*, a*) and some new eigenpair

)~,
~

( aλ

F

F
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||||2

||||4
||~|| 2

*
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δ
, and (3.2)

FE ||||2|
~

| *
≤− λλ (3.3)

assuming that the denominator in (2) is positive. Let the complementary ei-
genspace to (λ*, a*) be represented by (L2, X2), i.e. X2 is orthonormal, and its
columns contain all the eigenvectors of S except a*; L2 is diagonal and con-
tains the corresponding eigenvalues, all of which are at least δ less than λ*;
and SX2 = X2L2. A bound similar to (3) holds for L2:

FF ELL ||||2||
~

|| 22 ≤− . (3.4)
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Let 2

~
λ  be the largest eigenvalue of 2

~
L . Using Corollary IV.3.6 from 

(Stewart and JG 1990), one can show that (4) implies  

FE ||||2
~

22 +≤ λλ . (3.5)

If in turn 2/||||2 δ<FE , then inequalities (3) and (5) together will en-

sure that 2

~~
λλ > , i.e. )~,

~
( aλ is the principal eigenpair of S

~
.  

Since we are adding or deleting links from only one page, let F denote the 

perturbation to one row of A, so that S
~

= (A+F)T(A+F). It is straightforward 

to show ||FTF|| ≤ k and ||ATF||F = ||FTA||F ≤ dk . We can thus bound the norm 
of the perturbation to S:  

dkkSSE FF 2||
~

|||||| +≤−= . (3.6)

Using inequalities (2) and (6) to determine when we may guarantee ine-

quality (2) to hold, we arrive at the bound 2)( ddk −+< α , where 

)24/( εεδα += . One can easily verify that the same bound on k also en-

sures 2/||||2 δ<FE , which also guarantees that the denominator in (2) is 

positive, hence aa ~~*
= as previously stated.            �  

(Ng et al. 2001) also gives another theorem below, which is the converse of 
the theorem 1, i.e. if the eigengap is small, then eigenvectors can be sensitive 
to perturbations. 

Theorem 2. Suppose S is a symmetric matrix with eigengap δ. Then there 

exists a O(δ) perturbation to S, i.e. )(||
~

|| δOSS =− that causes a large 

(Ω(1)) change in the principal eigenvector. 
Proof. Since S = ST, it can be diagonalized: 
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where U is orthogonal, and whose columns are the S’s eigenvectors. Let ui

denote the i-th column of U. We pick TuuSS 222
~

δ+= . Since ||u2||2 = 1, the 

norm of the perturbation is only ||2δu2u2
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As 122 2
~

λδλλ >+= , ),
~

( 22 uλ is the new principal eigenpair. But u2 is

orthogonal to u1, so || u2 – u1||2 = Ω(1). �

To ground these results and illustrate why Theorem 1 requires a bound on
out-degrees, (Ng et al. 2001) gave the following another example. This exam-
ple showed a small perturbation—adding a single link—can have a large ef-
fect. In this example, a simple situation where two connected components in
the focused graph was considered. Here a connected component of a graph is
a subset whose elements are connected via link length ≥ 1 paths to each other,
but not to the rest of the graph. The example used the fact that if a graph has
multiple connected components, then the principal eigenvalue will have non-
zero entries in nodes only from the “largest” connected component, i.e. the
component with the largest eigenvalue.

Let us consider the Web/linkage graph shown in Fig. 3.3 (Ng et al. 2001),
which is a small subset of a much larger graph. Solid arrows denote the origi-
nal set of hyperlinks; the dashed arrow represents the link we will add. The
original principal eigenvalue for each of the two connected components
shown is λ = 20; with the addition of a single link, it is easy to verify that this

jumps to 25
~
=λ . Suppose that the community shown is part of a larger

Web/linkage graph with multiple sub-communities, and that originally the
biggest sub-community had eigenvalue 20 < λ1 < 25. It can be seen that by
adding one link, the graph shown in Fig. 3.3 becomes the biggest sub-
community, and the principal eigenvector now has positive values only for
nodes shown in this figure, and zeros elsewhere. In this case, the algorithm is
sensitive to a small perturbation to the topology structure.

Fig. 3.3. Picture of a Web community

3.9 HITS Improvement

HITS is based on the adjacency matrix which considers only single directed
hyperlinks. This, in some cases, will produce unreasonable results. (Wang
2002) gave a simple example revealing this problem.
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Suppose there is a 4-node graph G as follow:  
p1 ← p2 → p3 → p4, 

i.e. there are three hyperlinks: from p2 to p1, from p2 to p3, and from p3 to p4. 
Applying the HITS algorithm to G, both the authority score for p4 and the hub 
score for p3 would converge to 0. This is an abnormal scoring, since the au-
thority value of p4 and the hub value of p3 should be conferred by the hyper-
link from p3 to p4.  

Furthermore, if the node p4 is removed from G, by applying HITS algo-
rithm, p1, p2, and p3 in the resulting graph:  

p1 ← p2 → p3, 
will be assigned exactly the same authority scores and hub scores as in G. In 
other words, HITS algorithm actually “nullified” the node p4 in G in this case. 

The basic reason why HITS algorithm presents this kind of problem is ana-
lysed by (Wang 2002) as follows: HITS is based on the authority-hub rein-
forcement through single directed hyperlinks only (by adjacency matrix) and 
has no consideration of following multiple consecutive hyperlinks (a normal 
behaviour when users navigate the Web), and thus no score updating is done 
through multiple consecutive hyperlinks. 

To deal with this kind of problem, (Wang 2002) used another matrix in-
stead of the adjacency matrix in updating stages of HITS algorithm. This new 
matrix takes consideration of multiple consecutive hyperlinks from any page 
pi to another page pj, rather than a single direct hyperlink. In this sense, all 
multiple consecutive hyperlinks from pi to pj on the hyperlink graph should be 
considered.  The approach is trying to figure out the chance (probability) of 
following each directed path/hyperlink and making contribution to the score 
updating. 

The details of this improvement are as follows (Wang 2002). Let G = (V, 
E) be a connected hyperlink graph, with V = {p1, p2, . . . , pn} where n > 1, 
and let P denote the hyperlink probability matrix of the hyperlink graph G; 
the (i, j)th entry of P is equal to the (positive) probability of following the di-
rected hyperlink from pi to pj on page pi if such hyperlink exists, and is equal 
to 0 otherwise. Since there is a (positive) probability of not following any di-
rected hyperlink (Levene 2001), the sum of entries in each row of P is strictly 
less than 1.  

From the hyperlink probability matrix P, a new matrix H named as the 
multiple-hyperlink probability matrix can be generated such that the (i, j)th 
entry of H is the probability of following all multiple-hyperlinks (directed 
paths) from pi to pj, i.e.  

1

1

)( −

∞

=

−==∑ PIPPH
m

m . 
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Then for every node pi in V, let a[i] be its authority score and h[i] its hub
score. Initialize a[i] and h[i] to 1 for all nodes in V. Then, while the vectors a
and h have not converged:

{For all nodes in V, a[i] := ∑
=

n

j
ji jhH

1

][ ;

For all nodes in V, h[i] := ∑
=

n

j
ij jaH

1

][ ;

Normalize vectors a and h.
}

Like the HITS algorithm, this improved algorithm also converges to the
principle eigenvectors of matrices HTH and HHT separately (Wang 2002).

Applying the above algorithm to some examples, (Wang 2002) presented
some comparison results between the algorithm and the HITS, showing that
the improved algorithm avoids the nullification abnormality mentioned at the
beginning of this section. Two examples and the results are listed as follows:

Example 1: The previous demonstrated 4-node graph p1 ← p2 → p3 → p4.
Authority Score Hub Score

HITS (1/2, 0, 1/2, 0)T (0, 1, 0, 0)T

Improved Algo (1/4, 0, 1/4, 1/2)T (0, 1/2, 1/2, 0)T

Example 2: Another 4-node graph

Authority Score Hub Score
HITS (0, 0.3820, 0.6180, 0)T (0.6180, 0.3820, 0, 0)T

Improved Algo (0, 0.1706, 0.4737, 0.3558)T (0.4317, 0.3676, 0.2007, 0)T

The main issue of this improved algorithm is the method of constructing
the hyperlink probability matrix P, i.e. how to compute the hyperlink prob-
abilities. It is almost impossible to globally get the probability of each hyper-
link on the Web. (Levene 2001) and (Borges 2000) proposed an approach to
compute hyperlink probabilities of concerned Web pages from users’ access
log files. However, the method of computing the hyperlink probabilities
within the focused graph, which is derived from a user’s query rather than a
user’s access log file, still remains a problem. Although the overhead of this
improved algorithm is the probability matrices, this algorithm presents a way

P1

P2 P3 P4
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of improving the HITS algorithm as long as the hyperlink probability compu-
tation can be implemented effectively and efficiently. 

3.10 Noise Page Elimination Algorithm Based on SVD 

As analysed before, the topic drift problem of the HITS is mainly due to the 
tightly connection of many topic unrelated pages in the base set. In most 
cases, these topic unrelated pages, named noise pages, are brought into the 
base set by the pages in the root set (Bharat and Henzinger 1998) in the base 
set construction.  

The algorithm in this section, which was proposed in (Hou and Zhang 
2002), is to eliminate noise pages from the base set of pages B and obtain an-
other good quality base set B', from which a better Web community with bet-
ter authority and hub weights could be constructed. This algorithm purely 
makes use of the hyperlink information among the pages in B. Precisely, the 
algorithm considers the linkage relationships between the pages in root set R 
and pages in B – R. Here, B – R is a page set and a page in it belongs to B but 
does not belong to R. These linkage relationships are expressed in a linkage 
(adjacency) matrix A. With the help of singular value decomposition of the 
matrix A (Datta 1995), the relationships among pages at a deeper level are re-
vealed, and a numerical threshold is defined to eliminate noise pages. This 
approach is based on a reasonable assumption that the pages in the root set are 
topic related (Bharat and Henzinger 1998). Indeed, the root set R may also 
contain noise pages, though the possibility is small. However, by eliminating 
noise pages from the page set B – R, the influence of the remained noise 
pages in root set R to the HITS algorithm operation will be reduced, and better 
communities could be constructed. Therefore, the root set is used as a refer-
ence system in this algorithm to test if a page is a noise page. 

For convenience, the root set of pages R is denoted as a directed graph 
G(R)=(R,ER): the nodes correspond to the pages, and a directed edge 
(p,q)∈ER indicates a link from p to q. Similarly, the base set of pages B is de-
noted as a directed graph G(B)=(B,EB). From the construction procedure of B, 
it can be easily inferred that R ⊂ B and ER ⊂ EB.  

Suppose the size of R (the number of pages in R) is n and the size of B is m. 
For the pages in R, a linkage (adjacency) matrix nnijsS

×
= )( is constructed as  

⎩
⎨
⎧ =∈∈

=

.0

),(),(1

otherwise

jiorEijorEjiwhen
s RR

ij
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It represents the link relationships between the pages in R. For the pages in
B – R, another linkage matrix nnmijaA

×−
= )()( for page i∈(B – R) and page j∈R

could also be constructed as

⎩
⎨
⎧ −∈−∈

=

.0

),(),(1

otherwise

EEijorEEjiwhen
a RBRB

ij

This matrix directly represents the linkage information between the pages
in the root set and those not in the root set. The ith row of the matrix A, which
is an n-dimensional vector, could be viewed as the coordinate vector of the
page i in an n-dimensional space SR spanned by the n pages in R.

For any two vectors v1 and v2 in an n-dimensional space Sn, as known in
linear algebra, their similarity (or closeness) can be measured by their inner
product (dot product) in Sn. The elements in v1 and v2 are the coordinates of
v1 and v2 in the Sn respectively. In the page set B – R, since each page is rep-
resented as an n-dimensional vector (a row of matrix A) in the space SR, all
the similarities between any two pages in B – R can be expressed as AAT. On
the other hand, for the matrix A, there exists a SVD:

T
nnnnmnmnmnnm VUA

××−−×−×−
Σ= )()()()( .

Therefore, the matrix AAT can also be expressed as
TT UUAA ))(( ΣΣ= .

From this equation, it is obvious that matrix UΣ is equivalent to the matrix
A, and the ith (i = 1,…, m – n) row of matrix UΣ could be naturally and rea-
sonably viewed as the coordinate vector of the page i (page i ∈ B – R) in an-
other n-dimensional space RS ′ . Similarly, for the matrix S, there exists a SVD
of S:

T
nnnnnnnn XWS

××××
Ω= .

The ith (i = 1,…, n) row of matrix WΩ is viewed as the coordinate vector
of the page i (page i ∈ R) in another n-dimensional space RS ′′ .

For the SVD of matrix A, the matrix U could be expressed as
[ ] )()(21)()( ,...,, nmnmnmnmnm uuuU

−×−−−×−
= where ui (i = 1,…,m – n) is a m – n

dimensional vector T
inmiii uuuu ),...,,( ,,2,1 −

= , and matrix V as

[ ] nnnnn vvvV
××

= ,...,, 21 where vi (i = 1,…, n) is an n dimensional vector
T

iniii vvvv ),...,,( ,,2,1= . Suppose rank(A) = r and the singular values of matrix

A are
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.0...... 121 ===>≥≥≥
+ nrr σσσσσ

For a given threshold δ ( 10 ≤< δ ), a parameter k is chosen such that 

δσσσ ≥−
+ kkk /)( 1 . 

Let 

[ ]
knmkk uuuU

×−
= )(21 ,...,, , [ ] knkk vvvV

×
= ,...,, 21 , 

),...,,( 21 kk diag σσσ=Σ , 

and  
T

kkkk VUA Σ= . 

As the theorem in Sect. 2.6 indicates, Ak is the best approximation to A
with rank k. Accordingly, the ith row Ri of the matrix UkΣk is chosen as the 
coordinate vector of page i (page i ∈ B – R) in a k-dimensional subspace of 

RS ′ : 

),,...,,( 2211 kikiii uuuR σσσ=   i = 1, 2, …, m – n.  (3.7)

Since matrix A contains linkage information between the pages in B – R
and R, from the properties of SVD and choice of parameter k, it can be in-
ferred that coordinate vector (7) captures the main linkage information be-
tween the page i in B – R and the pages in R. The extent to which main link-
age information is captured depends on the value of parameter δ. The greater 
the value of δ, the more unimportant linkage information is captured. From 
the procedure of SVD (Datta 1995), coordinate vector transformation (7) re-
fers to linkage information of every page in B – R, and whether a linkage in 
matrix A is dense or sparse is determined by all pages in B – R, rather than by 
a certain page. Therefore, equation (7) reflects mutual influence of all the 
pages in B – R and reveals their relationships at a deeper level.  

In a similar way, suppose rank(S)=t and the singular values of matrix S are 
.0...... 121 ===>≥≥≥

+ ntt ωωωωω

The ith row iR′  of the matrix WtΩt is chosen as the coordinate vector of the 

page i (page i ∈ R) in a t-dimensional subspace of RS ′′ : 

),,...,,( 2211 titiii wwwR ωωω=′      i = 1, 2, …, n. (3.8)

Without loss of generality, let k = min(k,t). The vector Ri can be expanded 
from a k-dimensional subspace to a t-dimensional subspace as        
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),0,...,0,0,,...,,( 2211 321

kt

kikiii uuuR

−

= σσσ i = 1, 2, …, m – n. (3.9)

To compare the closeness between a page in B – R and the root set R, each
page i in B – R (i.e. vector Ri of (9)) is projected into the n-dimensional space
spanned by the pages in R (i.e. vectors iR′ of (8), i = 1,…, n). The projection

of page i (page i ∈ B – R), PRi, is defined as

),...,,( ,2,1, niiii PRPRPRPR = , i = 1, 2, …, m – n, (3.10)

where

|, |||/)(, jjiji RRRPR ′′= ∑∑
==

′′×=

t

k
jk

t

k
jkik RRR

1

2/12

1

)()( , j = 1, 2, …, n.

Within the same space, which is spanned by the pages in R, it is possible to
compare the closeness between a page in B – R and the root set R. In other
words, a threshold for eliminating noise pages can be defined. In fact, for
each PRi , if

avg

n

j
jii cPRPR ≥= ∑

=

2/1

1

2
, )(|||| , (3.11)

where

nRc
n

j
javg ∑

=

′=

1

|||| ,

then the page i in B – R could remain in the base set of pages B. Otherwise, it
should be eliminated from B. The parameter cavg in the above equation repre-
sents the average link density of the root set R, and is the representative
measurement of R. It is used as a threshold for eliminating noise pages. Intui-
tively, if a page in B – R is a most likely noise page, it usually has fewer links
with the pages in R. Thus its measurement ||PRi|| in (11) would be small and it
is most likely to be eliminated. This noise page elimination algorithm (NPEA)
algorithm is depicted as follows.

NPEA (G(R), G(B), δ )

Input:
G(R): G(R)=(R,ER) is a directed graph of root set pages with nodes

being pages and edges being links between pages.

G(B): G(B)=(B,EB) is a directed graph of base set pages with node

being pages and edges being links between pages.
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δ : threshold for selecting matrix approximation parameter k. 

   Output:  
G'(B): a new directed graph of base set pages with noise pages being  

eliminated by this algorithm. 

   Begin 
      Get the number of pages in B, m = size(B);    Get the number of  
      pages in R, n = size(R); 
      Construct linkage matrix between pages in R, nnijsS

×
= )( ;   

      Construct linkage matrix between B – R and R, nnmijaA
×−

= )()( ; 

      Compute the SVD of S and its singular values 

          T
nnnnnnnn XWS

××××
Ω= ;  0...... 121 ===>≥≥≥

+ ntt ωωωωω ; 

      Compute the SVD of A and its singular values 

         T
nnnnmnmnmnnm VUA

××−−×−×−
Σ= )()()()( ;

0...... 121 ===>≥≥≥
+ nrr σσσσσ ; 

Choose parameter k such that δσσσ ≥−
+ kkk /)( 1 ; 

Compute coordinate vectors Ri (i = 1, 2, …, m – n) for each page in B –  

R according to (7); 

Compute coordinate vectors R'i (i = 1, 2, …, n) for each page in R  

according to (8); 

Compute the projection vectors PRi (i = 1, 2, …, m – n) according to  

(10); 

     Compute the representative measurement of R, njRc
n

j
∑ ′=
=1

|||| ; 

     if cPRi <||| |  (i = 1, 2, …, m – n) then

          Begin 
  Eliminate page i from B, B = B – page i ; 

Eliminate links related with page i from EB  
EB = EB – (page i→ p) – (p→ page i);    p ∈ B, p≠ i.

          End 
      return G'(B) = (B,EB);  
   End 
The complexity of the algorithm is dominated by the SVD computation of 

the linkage matrices A and S. Without loss of generality, suppose M = max(m 



3.11 SALSA (Stochastic algorithm) 43

– n, n). Then the complexity of the algorithm is )( 32 nnMO + (Golub and

Loan 1993). If n << m, the complexity is approximately )( 2nmO .

3.11 SALSA (Stochastic algorithm)

As indicated in Sect. 3.1, the authorities of the base set S correspond to the
principal eigenvector entries of the matrix ATA, and the hubs correspond to
the principal eigenvector entries of the matrix AAT, where matrix A is the ad-
jacency matrix of the base set S. From the definition of the matrix A, it is
known that the value of the matrix entry is either 1 or 0, which means it is
unified.

We define the matrix Â = ATA and matrix Ĥ = AAT, which are called asso-
ciation matrices. In the field of bibliometrics, the matrix Â is called the coci-
tation matrix of the base set S, whose entry value Âi,j is the number of pages
that jointly point at (cite) pages i and j. Matrix Ĥ is called the bibliographic
coupling matrix of the base set S, whose entry value Ĥi,j is the number of
pages jointly referred to (pointed at) by pages i and j. HITSalgorithm provides
a original approach of constructing these two association matrices with uni-
fied values. This construction approach does not consider the probability of
Web surf from one page to another. Considering this situation, Lempel and
Moran (Lempel 2001) proposed a Stochastic Approach for Link-Structure
Analysis (SALSA). The approach is based upon the theory of Markov chains,
and relies on the stochastic properties of random walks performed on the col-
lection of pages (base set). It differs from the HITSin the manner in which the
association matrices are defined.

The input to SALSAconsists of a base set of pages S which is built around a
topic σ in the manner described in Sect. 3.1. Intuition suggests that authorita-
tive pages on topic σ should be visible from many pages in the subgraph in-
duced by S. Thus, a random walk on this subgraph will visit authorities with
high probability. SALSAcombines the theory of random walks with the notion
of the two distinct types of Web pages, hubs and authorities, and actually
analyses two different Markov chains: a chain of hubs and a chain of authori-
ties (Lempel 2001). Analysing both chains allows the approach to give each
Web page two distinct scores, a hub score and an authority score. The details
of SALSA are presented as follows.

The SALSA begins with building a bipartite undirected graph Ĝ = (Vh, Va,
E) from base set and its link-structure:

− Vh = {sh | sh ∈ S and out-degree (sh) > 0} (the hub side of Ĝ)
− Va = {sa | sa ∈ S and in-degree (sh) > 0 } (the authority side of Ĝ).
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− E = {(sh, ra) | sh ∈ Vh, ra ∈ Va and sh → ra in S}. 

From the above bipartite construction, it is clear that each nonisolated page 
s ∈ S is represented in Ĝ by one or both of the nodes sh and sa. Each link s →
r is represented by an undirected edge connecting sh and ra. Fig. 3.4 (Lempel 
2001) shows a construction of a bipartite graph from a given collection. 

On this bipartite graph, two distinct random walks can be performed. These 
two walks will naturally start off from different sides of Ĝ. Each walk will 
only visit nodes from one of the two sides of the graph, by traversing paths 
consisting of two Ĝ-edges in each step. Since each edge crosses sides of Ĝ, 
each walk is confined to just one of the graph’s sides. Every path of length 2 
in Ĝ represents a traversal of one link in the proper direction (when passing 
from the hub side of Ĝ to the authority side), and a retreat along a link (when 
passing from the authority side to the hub side). Since the hubs and authorities 
of the topic σ should be highly visible in Ĝ (reachable from many nodes by 
either a direct edge or by short paths), we may expect that the authorities will 
be among the nodes most frequently visited by the random walk on Va, and 
that the hubs will be among the nodes most frequently visited by the random 
walk on Vh. In this way, two different Markov chains can be examined corre-
sponding to these random walks: the chain of the visits to the authority side of 
Ĝ, and the chain of visits to the hub side of Ĝ. These chains distinguish two 
aspects of each page. 

Fig. 3.4. Transforming (a) the collection S into (b) a bipartite graph Ĝ

Now two stochastic matrices could be defined, which are the transition ma-
trices of the two Markov chains at interest: 

1. The hub matrix Ĥ, defined as follows: 
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2. The authority-matrix Â, defined as follows:
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where deg(p) is the in/out degree of the page p, i.e. if page p is pointed to by
other pages, deg(p) is the in degree of p, otherwise is the out degree of p. A
positive transition probability âi, j > 0 implies that a certain page k points to
both pages i and j, and hence page j is reachable from page i by two steps: re-
tracting along the link k → i and then following the link k → j. The meaning
of the probability ĥi,j > 0 is similar. From these two transition matrices, au-
thorities and hub can be identified in the same way as HITS, i.e. the principal
community of authorities (hubs) founded by SALSAwill be composed of thek
pages having the highest entries in the principal eigenvectors of Â (Ĥ) for
some user defined k.

Alternatively, the matrices Ĥ and Â can be defined as follows. Let A be the
adjacency matrix of the directed graph defined by its link topology (see Sect.
3.1). Denoted by Ar the matrix whose each non-zero entry value is divided by
the sum of the entry values in its row, and by Ac the matrix whose each non-
zero entry value is divided by the sum of the entry values in its column. From
the adjacency matrix construction, it is obvious that the sums of
rows/columns that contain nonzero entry are greater than zero. Then Ĥ con-
sists of the non-zero rows and columns of ArAc

T, and Â consists of the non-
zero rows and columns of Ac

TAr. Recall that the HITSuses the association ma-
trices AAT, ATA instead. We also assume that Ĝ is connected, causing both
stochastic matrices Â andĤ to be irreducible. This assumption does not form
a limiting factor, since whenĜ is not connected the above technique could be
used on each connected component separately.

Lempel and Moran (Lempel 2001) compared SALSAand HITSby applying
these two algorithms to some artificial and real situations. The comparison
focused on the tightly knit community (TKC) effect, which usually caused
topic drift problem in HITS. As defined in (Lempel 2001), a tightly knit com-
munity is a small but highly interconnected set of pages. Roughly, the TKC
effect occurs when such a community scores high in link-analysing algo-
rithms, even though the pages in the TKC are not authoritative on the topic, or
pertain to just one aspect of the topic. The comparison in (Lempel 2001) indi-
cates that HITSis vulnerable to this effect, and will sometimes rank the pages
of a TKC in unjustifiably high positions, while SALSAis less vulnerable to the
TKC effect and produces good results in cases where the HITS fails to do so.
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It seems to be a premise for linkage analysis that considering the in-degree 
of pages as a sole measure of their authorities does not produce satisfactory 
results. Some examples in (Kleinberg 1998) endorsed this premise. However, 
the results produced by SALSA seem to contradict this premise: the stochastic 
rankings seem quite satisfactory there, since the stochastic rankings are 
equivalent to simple in-degree counts (normalized by the size of the con-
nected component which each page belongs to). The reason why SALSA is 
successful, as indicated in(Lempel 2001), is the improvement of the assem-
bled sub-graph quality. Actually, for SALSA, when expanding the root set to 
the base set, an attempt is made to filter non-informative links which exist be-
tween Web pages. This was done by studying the target URL of each link, in 
conjunction with the URL of the link’s source(Lempel 2001). 

− Following Kleinberg (Kleinberg 1998), intra-domain links are ignored, 
since these links tend to be navigational aids inside an intranet, and do not 
confer authority on the link’s destination. The heuristic in SALSA did not 
rely solely on an exact match between the hosts of the link’s source and 
target, and was also able to classify links between related hosts (such as 
“shopping.yahoo.com” and “www.yahoo.com”) as being intra-domain. 

− Links to cgi scripts are ignored. These links are usually easily identified by 
the path of the target URL (e.g., http://www.altavista.com/cgi-
bin/query?q=car). 

− Ad-links are tried to be identified and ignored. This was achieved by delet-
ing links that contained certain characters in their URL (such as ’=’, ’?’ and 
others) which appear almost exclusively in advertisements and sponsorship 
links, and in links to dynamic content. 

By this improvement of page set, as well as corresponding sub-graph, 38% 
of the links examined in (Lempel 2001) were usually ignored. The page 
sets/collections themselves turn out to be relatively sparse graphs, with the 
number of edges never exceeding three times the number of nodes. 

As a final note, denoting the set of outgoing links of a page p by L(p), 
Lempel and Moran (Lempel 2001) observed that both SALSA and HITS ap-
proaches obey the following property: 

L(p) ⊆ L(q) ⇒ hub-score (p) ≤ hub-score (q). 
Thus, in both approaches, adding outgoing links to your page can only im-

prove its hub score. In order to fight this sort of spam, link analysis must pun-
ish pages for having an excess of irrelevant links. 

In general, HITS algorithm paves a way of conducting hyperlink analysis al-
though there are still many issues to be solved about this algorithm. Many ef-
forts have been made to improve this algorithm. These efforts can be mainly 
classified into two categories: the first one is to more precisely describe rela-
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tionships between pages conveyed by hyperlinks, another one is to improve
the quality of the focused page set as well as the corresponding sub-graphs.
As stated in (Bharat and Henzinger 1998; Chakrabarti et al. 1998) although
hyperlink analysis could reveal many latent relationship between Web pages,
it is limited in revealing sematic information between pages. Therefore, fur-
ther research can be done in combining Web page content analysis with hy-
perlink analysis.



4 PageRank Related Algorithms

Web page ranking is another interesting and challenging topic in Web com-
munity research with a great application potential for improving Web infor-
mation searches. This chapter presents and discusses some representative al-
gorithms in this area. Sect. 4.1 gives the original PageRank algorithm that is
based on hyperlink information. The algorithm that probabilistically com-
bines hyperlink and content information for page ranking is discussed in Sect.
4.2. As an improvement of previous two algorithms, a page ranking algorithm
that considers user’s query context or topics is discussed in Sect. 4.3. Sect. 4.4
and 4.5 are dedicated respectively to two algorithms that aim at accelerating
PageRank computation. In Sect. 4.6, a general framework that is based on
random walk model for page ranking is discussed. This random walk model
considers all possible actions the Web surfer may take. Sect. 4.7 discusses
another page ranking algorithm that mainly focuses on authority page rank-
ing. The last two sections, Sect. 4.8 and 4.9, are dedicated to another kind of
page ranking algorithms that rank pages with respect to user’s queries or a
given page.

4.1 The Original PageRank Algorithm

It is clear from Chap. 3 that Web search results can be much improved by us-
ing the information contained in link structure between pages. For example,
given a query which is a set of words or other query terms, HITS invokes a
traditional search engine to obtain a set of pages relevant to it, expands this
set with its inlinks and outlinks, and then attempts to find two types of pages,
hubs and authorities. Because this computation is carried out at query time, it
is not feasible for today’s search engines, which need to handle tens of mil-
lions of queries per day.

The PageRank algorithm was originally proposed by Brin and Page (Brin
and L. Page 1998) and incorporated in the search engine Google. In contrast
to HITS, PageRank computes a single measure of quality for a page at crawl
time. This measure is then combined with a traditional information retrieval
(IR) score at query time, and has the advantage of much greater efficiency.
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Actually, PageRank also tries to capture the notion of “importance” of a page 
from linkage information. For instance, from our intuition, the Yahoo! home-
page is more important than the homepage of the Stanford Database Group. 
This difference is reflected in the number of other pages that point to these 
two pages, that is, more pages point to the Yahoo! homepage than to the Stan-
ford Database Group homepage. The rank of page A could thus be defined as 
the number of pages in the Web that point to A, and could be used to rank the 
results of a search query (Arasu 2000). This is actually the idea of academic 
literature citation that is applied to the Web for giving some approximation of 
a page’s importance or quality. However, citation ranking does not work very 
well, especially against spamming, since it is quite easy to artificially create a 
lot of pages to point to a desired page. 

PageRank extends the basic citation idea by taking into consideration the 
importance of the pages that point to a given page. It does this by examining 
page importance propagation through hyperlinks, i.e. the importance of a 
page both depends on and influences the importance of other pages. Thus a 
page receives more importance if Yahoo points to it than if some unknown 
page points to it. Citation ranking, in contrast, does not distinguish between 
these two cases. 

Let’s first discuss a simple definition of PageRank that captures the above 
intuition (Arasu 2000). Let the pages on the Web be denoted by 1, 2, … , m. 
Let N(i) denote the number of forward (outgoing) links from page i. Let B(i) 
denote the set of pages that point to page i. For now, assume that the Web 
pages form a strongly connected graph, i.e. every page can be reached from 
any other page. The simple PageRank of page i, denoted by r(i), is given by 

∑
∈

=
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The division by N(j) captures the intuition that pages which point to page i 
evenly distribute their ranks to all of the pages they point to. This simple rank 
algorithm can be expressed in the linear algebra language. Actually it can be 
written as r = AT r, where r is the m×1 vector [r(1), r(2), … , r(m)]T, and the 
elements ai,j of the matrix A are ai,j = 1/N(i), if page i points to page j, and ai,j

= 0 otherwise. Thus the PageRank vector r is the eigenvector of matrix AT

corresponding to the eigenvalue 1. Since the graph is strongly connected, it 
can be shown that 1 is an eigenvalue of AT, and the eigenvector r is uniquely 
defined when a suitable normalization is performed and the vector is non-
negative (Arasu 2000). 

Since computing simple PageRank is equivalent to computing the principal 
eigenvector of the matrix AT defined above, many methods of computing a 
matrix principal eigenvector can be used for page rank computation. One of 
the simplest methods is called power iteration (Golub and Loan 1993). In the 
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power iteration, an arbitrary initial vector is repeatedly multiplied with the
given matrix until it converges to the principal eigenvector. To guarantee the
convergence of the power iteration, it is required that the graph is aperiodic.
In practice, the Web is always aperiodic (Arasu 2000). The power iteration
for PageRank computation is given below.

1. s ← any random vector
2. r ← AT

×s
3. if || r – s ||< ε then end and r is the PageRank vector, otherwise go to

step 4

4. s ← r, go to 2.

To illustrate, Fig. 4.1(a) shows the PageRank for a simple graph (Arasu
2000). It is easy to verify that this assignment of ranks satisfies the definition
of PageRank. For instance, node 2 has a rank of 0.286 and two outgoing links.
Half of its rank (0.143) flows to node 1 and half to node 3. Since node 3 has
no other incoming links, its rank is what is received from node 2, i.e., 0.143.
Node 1 receives 0.143 from 2, plus 0.143/2 from node 3, plus 0.143/2 from
node 5, for a total of 0.286. Note that node 1 has a high rank because it has
three incoming links. Node 2 has the same high rank because anyone who vis-
its 1 will also visit 2. Also note that the ranks over all nodes add up to 1.0.

Fig. 4.1. (a) Simple PageRank (b) Modified PageRank with d = 0.8

Simple PageRank is well defined only if the link graph is strongly con-
nected. However, the Web is far from strongly connected. In Google, Brin
and Page (Brin and L. Page 1998) used a modified PageRank which is de-
fined as follows:
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where m is the total number of nodes in the graph, d (0 < d < 1) is a damping 
factor which is set to 0.85 in (Brin and L. Page 1998). It is clear that the sim-
ple PageRank is a special case that occurs when d = 1. Note that the PageR-
anks form a probability distribution over Web pages, so the sum of all Web 
pages’ PageRank will be 1. Fig. 4.1 (b) shows the modified PageRank (for d 
= 0.8) for the graph of Fig. 4.1(a) with the link 5 →1 removed. Nodes 4 and 5 
now have higher ranks than the other nodes, indicating that surfers will tend 
to gravitate to 4 and 5. However, the other nodes have non-zero ranks. 

PageRank can be thought of as a model of user behaviour (Brin and L. 
Page 1998). Suppose there is a “random surfer” who is given a Web page at 
random and keeps clicking on links, never hitting “back” but eventually gets 
bored and starts on another random page. The probability that the random 
surfer visits a page is its PageRank, and the damping factor d is the probabil-
ity at each page the “random surfer” will get bored and request another ran-
dom page.  

Another intuitive justification (Brin and L. Page 1998) is that a page can 
have a high PageRank if there are many pages that point to it, or if there are 
some pages that point to it and have a high PageRank. Intuitively, pages that 
are well cited from many places around the Web are worth looking at. Also, 
pages that have perhaps only one citation from something like the Yahoo!
homepage are also generally worth looking at. If a page was not high quality, 
or was a broken link, it is quite likely that Yahoo’s homepage would not link 
to it. PageRank handles both these cases by recursively propagating weights 
through the link structure of the Web.

The above power iteration for simple PageRank computation can also be 
adapted to compute this modified PageRank. In this case, the matrix A in the 
iteration should be defined as 
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Since the rows of A are normalized, the PageRank corresponds to the prin-
cipal eigenvectors of A with the eigenvalue of 1. 

Theoretically, the convergence of the power iteration for a matrix depends 
on the eigenvalue gap, which is the difference between the modulus of the 
two largest eigenvalues of the given matrix. Page and Brin et al (Page 1998) 
claim that the power iteration converges reasonably fast, in around 50 itera-
tions. In practice, we are more interested in the relative ordering of the pages 
induced by the PageRank, than the actual PageRank values themselves. Thus 
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we can terminate the power iteration once the ordering of the pages becomes
reasonably stable. This will save the overhead of iteration operations.

In Google, PageRank is used to prioritize the results of Web keyword
searches. Particularly, Google uses both IR techniques and PageRank to an-
swer keyword queries. Given a query, Google computes an IRscore for all the
pages that contain the query terms. The IRscore is combined with the PageR-
ank of these pages to determine the final rank for this query.

4.2 Probabilistic Combination of Link and Content
Information

PageRank can greatly improve the traditional keyword based Web search.
However, the disadvantage of it is that the PageRank score of a page ignores
whether or not the page is relevant to the query at hand. In other words, the
PageRank score of a page can be viewed as the rate at which a surfer would
visit that page, if it surfed the Web indefinitely, blindly jumping from page to
page (Richardson 2002). The probabilistic combination of link and content in-
formation in PageRank, which was proposed by Richardson and Domingos,
does something closer to what a human surfer would, jumping preferentially
to pages containing the query terms.

As indicated in (Richardson 2002), a problem common to both PageRank
and HITS is topic drift. Because they give the same weight to all edges, the
pages with the most inlinks in the network being considered (either at crawl
or query time) tend to dominate, whether or not they are the most relevant to
the query. The algorithm in this section, in contrast, is query-dependent, con-
tent sensitive version of PageRank.

Original PageRank simulates a Web surfer’s behaviour, jumping frompage
to page with uniform probability of choosing link to follow at each step. Sup-
pose now we have a more intelligent surfer, who probabilistically hops from
page to page, depending on the content of the pages and the query terms the
surfer is looking for. Then, the resulting probability distribution over pages is
(Richardson 2002):

∑
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where Pq(i→j) is the probability that the surfer transitions to page j given that
he is on page i and is searching for the query q. Pq’(j) specifies where the
surfer chooses to jump when not following links. Pq(j) is the resulting prob-
ability distribution over pages and corresponds to the query-dependent Pag-
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eRank score, i.e. QD-PageRankq(j) ≡ Pq( j ). Compared with original Page-
Rank, probability distribution (1) is different in replacing 1/m with Pq’(j) and 
replacing 1/N(i) with Pq(i→j). This means, in this algorithm, the hyperlinks 
are not evenly considered anymore. Choosing the hyperlink to go along de-
pends on if the link is related to the query q.  

As with PageRank, QD-PageRank is determined by iterative evaluation of 
equation 1 from some initial distribution, and is equivalent to the primary ei-
genvector of the transition matrix Zq, where 
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Pq(i→j) and Pq’(j) are determined as follows: 
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where Rq(j) is a measure of relevance of page j to query q, W is the set of 
pages and Fi is the set of pages page i links to. This equation means when 
choosing among multiple out-links from a page, the directed surfer tends to 
follow those which lead to pages whose content has been deemed relevant to 
the query. Similar to PageRank, where a page’s outlinks all have zero rele-
vance, or has no outlinks, links are added from that page to all other pages in 
the network. On such a page, the surfer thus chooses a new page to jump to 
according to the distribution Pq’(j) (Richardson 2002). 

There are many ways to determine the relevance function Rq(j). In the sim-
plest case, Rq(j) is chosen as a constant, i.e. Rq(j) = R. This relevance function 
is independent of the query term and the document, and QD-PageRank then 
reduces to Page-Rank. One simple content-dependent function could be Rq(j)
= 1 if the term q appears on page j, and 0 otherwise. Much more complex 
functions could be used, such as the well-known TFIDF information retrieval 
metric (Salton and MJ 1983), a score obtained by latent semantic indexing 
(Deerwester et al. 1990), or any heuristic measure using text size, positioning, 
etc. It is important to note that most current text ranking functions could be 
easily incorporated into the above algorithm. 

In practice, the user’s query usually contains several query terms. For a 
given multiple-term query, Q={q1,q2,…}, the surfer surfs the Web like this: 
the surfer selects a query term q according to some probability distribution 
P(q), and uses that term to guide his behaviour according to equation 1 for a 
large number of steps. He then selects another term according to the distribu-
tion to determine his behaviour, and so on. The resulting distribution over vis-
ited Web pages is QD-PageRankQ and is given by (Richardson 2002): 
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As indicated before, for standard PageRank, the PageRank vector is
equivalent to the primary eigenvector of the matrix AT, The vector of single-
term QD-PageRankq is again equivalent to the primary eigenvector of the ma-
trix Zq. From these facts, can we say QD-PageRankQ vector is equivalent to

the primary eigenvector of a matrix ∑
∈

=

Qq
qQ qP ZZ )( ? In fact, this is not

the case. As studied by (Richardson 2002), the primary eigenvector of ZQ cor-
responds to the QD-PageRank obtained by a random surfer who, at each step,
selects a new query according to the distribution P(q). However, QD-
PageRankQ is approximately equal to the PageRank that results from this sin-
gle-step surfer. (Richardson 2002)proved this conclusion as follows.

Let xq be the L2-normalized primary eigenvector for matrix Zq (note ele-
ment j of xq is QD-PageRankq(j)). Since xq is the primary eigenvector for Zq,
we have (Golub and Loan 1993) ∀ q, r ∈ Q, || Zqxq || ≥ || Zqxr ||. Thus, to a
first degree of approximation, qq
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and thus xQ is approximately an eigenvector for ZQ. Since xQ is equivalent to
QD-PageRankQ, and ZQ describes the behaviour of the single-step surfer, QD-
PageRankQ is approximately the same PageRank that would be obtained by
using the single-step surfer. The approximation has the least error when the
individual random surfers defined by Zq are very similar, or are very dissimi-
lar.

In practical use, the difficulty with calculating a query dependent PageR-
ank is that a search engine cannot perform the computation, which can take
hours, at query time, when it is expected to return results in seconds or less.
This problem could be surmounted by pre-computing the individual term
rankings QD-PageRankq, and combining them at query time according to
equation 3 (Richardson 2002). (Richardson 2002)claimed that the computa-
tion and storage requirements for QD-PageRankq for hundreds of thousands
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of words are only approximately 100 times those of a single query independ-
ent PageRank. 

4.3 Topic-Sensitve PageRank 

Although Richardson and Domingos’ PageRank (Richardson 2002) enhances 
search ranking by generating a PageRank vector for each possible query term, 
the approach requires considerable processing time and storage, and is not 
easy to be extended to make use of user and query context. To enable the 
PageRank be able to consider user’s query context or topic, Havrliwala 
(Haveliwala 2002) proposed a topic-sensitive PageRank. This algorithm is 
based on 16 topics that are extracted from the top-level categories of the Open 
Directory Project (ODP) . In this approach, we pre-compute a set of impor-
tance scores of a page with respect to various topics. At query time, these im-
portance scores are combined based on the topics of the query to form a com-
posite PageRank score for those pages matching the query. 

Actually, the topic-sensitive PageRank comes from the original PageRank 
algorithm. As indicated the Sect. 4.1, the original PageRank scores of pages 
corresponds to the principal eigenvector entries of the matrix AT.  We can re-
write this algorithm in the following form: 

r
r

= AT
× r
r

= (1 – α) M T
× r
r

+ α p
r

, 

where r
r

 is the page score vector, i.e. r
r

 = [r(i)]m×1, α = (1 – d) and p
r

 = 

[1/m] m×1. In (Haveliwala 2002), the value of α is set to 0.25. The key of creat-
ing topic-sensitive PageRank is to bias the computation to increase the effect 
of certain categories of pages by using a non-uniform m×1 personalization 
vector for p

r

(Haveliwala 2002). 
This topic-sensitive PageRank consists of two steps: ODP-biasing and 

query-time importance score computing. The details of these two steps are as 
presented below (Haveliwala 2002). 

ODP-biasing  This step is to generate a set of biased PageRank vec-
tors from a set of basis topics. This step is performed once, offline during the 
pre-processing of the Web crawl. In this step, 16 different biased PageRank 
vectors are created by using the URLs below each of the 16 top-level catego-
ries of the ODP as the personalization vector. In particular, let Tj be the set of 
URLs under the ODP category cj. Then when computing the PageRank vector 
for topic cj, we use the a non-uniform vector Vj in place of the uniform damp-
ing vector p

r

, i.e. p
r

 = v
r

j where  
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The PageRank vector for topic cj is denoted as PR (α, v
r

j). In this step, we

also compute the 16 class term-vector D
r

j consisting of the terms in the
documents below each of the 16 top-level categories. Actually, Djt simply
gives the total number of occurrences of term t in documents listed below
category cj of ODP.

It is obvious that we can also use other sources for creating topic-sensitive
PageRank vectors. The reason why (Haveliwala 2002) uses ODP is that the
ODP data is freely available. Furthermore, ODP is complied by thousands of
volunteer editors, therefore, it is less susceptible to influence by any one
party.

Query-Time Importance Score Computing This step is performed as
query time. Given a query q, let q’ be the context of q. In other words, if the
query was issued by highlighting the term q in a page u, then q’ consists of
the terms in u. For ordinary queries not done in context, let q’= q. Firstly, we
compute the class probabilities for each of the 16 top-level ODPclasses, con-
ditioned on q’. Let q’i be the ith term in q’. Then given the query q, we com-
puting the following for each cj:
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)|( ji cqP ′ is easily computed from the class term-vector D
r

j. The quantity

P(cj) is not so straightforward. In (Haveliwala 2002), P(cj) is made uniform.
In other words, for some user k, we can use a prior distribution Pk(cj) that re-
flects the interests of user k.

Next, we compute the query-sensitive importance score of each retrieved
page that contains the original query term q. Let rankjd be the rank of page d

given by the rank vector PR (α, v
r

j), then the query-sensitive importance
score sqd for the page d is computed as follows:

∑ ⋅′=

j
jdjqd rankqcPs )|( .

The results are ranked according to this composite score sqd.
The above query-sensitive PageRank computation has the following prob-

abilistic interpretation. With probability 1 – α, a random surfer on page u fol-
lows an outlink of u where the particular outlink is chosen uniformly at ran-
dom. With probability αP(cj|q’), the surfer instead jumps to one of the pages
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in Tj where the particular page in Tj is chosen uniformly at random. The long 
term visit probability that the surfer is at page d is exactly given by the com-
posite score sqd defined above.   

4.4 Quadratic Extrapolation 

As discussed before, the PageRank scores, which correspond to the principal 
eigenvector entries of the matrix AT, are computed by using power iteration 
method. For simplicity of the following discussion, we denote AT as A. The 
power method is the oldest method for computing the principal eigenvector of 
a matrix. The intuition behind the convergence of the power method is as fol-

lows. We assume, for simplicity, that the start vector )0(x
r

 lies in the subspace 
spanned by the eigenvectors of A (this assumption does not affect the conver-

gence of the method). Then )0(x
r

can be written as a linear combination of the 
eigenvectors of A: 
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where iu
r

 (i = 1, …, m) are eigenvectors of A. Since we know that the first ei-

genvalue of matrix A is λ1 = 1, we have  

mmm uuuxAx
rrrrr

λαλα +++== ...2221
)0()1( , 

and 

m
n
mm

nnn uuuxAx
rrrrr

λαλα +++== ...2221
)0()( . 

Since λm ≤ ,…, ≤ λ2 < 1, )0()( xA n r

 approaches 1u
r

 as n grows large. There-
fore, the power method converges to the principal eigenvector of the matrix 
A. It can be seen as well that if the eigengap 1 – |λ2| is small, the convergence 

of the method will be slow because n must be large before n
2λ  is close to 0. 

Because of this, it is necessary to use faster method for computing PageRank, 
especially for those personalized and topic-sensitive PageRank schemes that 
require computing many PageRank vectors, each biased towards certain types 
of pages. 

For this purpose, (Kamvar et al. 2003) proposed a quadratic extrapolation 
algorithm for the fast computation of PageRank. The algorithm is named 
QuadraticPowerMethod in which another algorithm, named QuadraticEx-
trapolation, is embedded. These two algorithms are depicted as follows 
(Kamvar et al. 2003): 

Function )(nx
r

= QuadraticPowerMethod ( ) { 
)0(x

r

= v
r

; 
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The overhead in performing the extrapolation, function QuadraticExtrapo-
lation, comes primarily from the least-squares computation of γ 1 and γ 2, i.e.
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where Y+ is the pseudoinverse of the matrix Y. Since Y is an m×2 matrix, we
can do the least-square solution cheaply in just two iterations of the Grant-
Schmidt algorithm (Meng et al. 2002). Since the detailed computational algo-
rithm discussion is beyond our scope, for readers who are interested in details
of this computation, please refer to (Kamvar et al. 2003) and (Trefethen and
D 1997).
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4.5 Exploring the Block Structure of the Web for 
Computing PageRank 

Although the quadratic extrapolation method in Sect. 4.4 provides an ap-
proach of quickly computing the PageRank, the speedups from this method 
are modest for the parameter settings (i.e. d =0.25) typically used for PageR-
ank (Kamvar et al. 2003). Another approach that makes use of Webpage 
block structure information for speeding up PageRank computation was pro-
posed by (Kamvar et al. 2003).  

It was noticed through the investigation conducted by (Kamvar et al. 2003) 
that the Web link graph has a nested block structure: the vast majority of hy-
perlinks link pages on a host to other pages on the same host, and many of 
those that do not link pages within the same domain. The pages in the same 
block are heavily linked. Actually in (Kamvar et al. 2003), dotplot were used 
to visualize the link matrix. In a dotplot, if there exists a link from page i to 
page j then point (i, j) is colored; otherwise, point (i, j) is white. Fig. 4.2  
(Rennie J. and A. McCallum 1999) gives an example of a slice for Stan-
ford/Berkeley Host Graph. It can be seen from this example that: 

• There is a definite block structure to the Web. 
• The individual blocks are much smaller than entire Web. 
• There are clear nested blocks corresponding to domains, hosts, and subdi-

rectories within the path. 

Fig. 4.2. Stanford/Berkeley Host Graph 

The purpose of the algorithm in (Kamvar et al. 2003) is to directly exploit 
this kind of structure information to achieve large speedups compared with 
previous algorithms for computing PageRank.  

For better understanding the idea of the algorithm, we recall the PageRank 
computation here in terms of matrix expression. As we know, the PageRank 
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computation is equivalent to the computation of principal eigenvector of the
transition matrix AT, which is defined as follow (Sect. 4.1):
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then the matrix A can be rewritten as
A = dM + (1 – d) E.

As indicated in Sect. 4.1, in terms of the random walk, the effect of E is as
follows. At each time step, with probability (1 – d), a surfer visiting any node
will jump to a random Web page (rather than following an outlink). The des-
tination of the random jump is chosen according to the probability distribu-
tion given in v

r

. In this original PageRank computation, the vector v
r

is uni-
formed. However, if the vector v

r

could be redefined to be non-uniform, then
E adds artificial non-uniform probabilities and the resultant PageRank vector
could be biased to prefer certain kinds of pages. This is the idea based on
which the algorithm in (Kamvar et al. 2003) was developed. For this reason,
the vector v

r

is referred to as the personalization vector.
In practical situation, the power method for PageRank computation can be

rewritten as the following algorithm (Kamvar et al. 2003):

Function pageRank(G, )0(x
r

, v
r

){
Construct matrix M from G where G is the Web page graph;
Repeat
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δ ;

Until δ < ε;

Return )1( +kx
r

;
}

The overview of this algorithm that exploits the block structure information
is as follow (Kamvar et al. 2003): for each host, a “local PageRank vector” is
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computed, giving the relative importance of pages within a host. These local 
PageRank vectors can then be used to form an approximation to the global 
PageRank vector that is used as a starting vector for the standard Page-Rank 
computation. This is the basic idea behind the Block-Rank algorithm, which 
is summarized as the following procedures: 

1. Split the Web into blocks by domain. 
2. Compute the Local PageRanks for each block. 
3. Estimate the relative importance, or “BlockRank” of each block. 
4. Weight the Local PageRanks in each block by the Block-Rank of that 

block, and concatenate the weighted Local PageRanks to form an approxi-
mate Global PageRank vector z

r

. 
5. Use z

r

 as a starting vector for standard PageRank computation. 

The details are described below (Kamvar et al. 2003). Before that, some 
notations that will be used are introduced here. We will use lower-case indi-
ces (i.e. i, j) to represent indices of individual Web sites, and upper case indi-
ces (i.e. I, J) to represent indices of blocks. We use the notation i ∈ I to de-
note that page i ∈ block I. The number of elements in block J is denoted nJ. 
The graph of a given block J is given by the nJ × nJ submatrix GJJ of the ma-
trix G. 

Computing Local PageRanks This step computes a “local PageR-
ank vector” for each block in the Web. Since most blocks have very few links 
in and out of the block as compared to the number of links within the block, it 
seems plausible that the relative rankings of most of the pages within a block 
are determined by the inter-block links. 

We define the local PageRank vector Jl
r

 of a block J (GJJ ) to be the result 

of the PageRank algorithm applied only on block J, as if block J represented 
the entire Web, and as if the links to pages in other blocks did not exist. That 
is: 

Jl
r

 = pageRank(GJJ, Js
r

, Jv
r

), 

where the start vector Js
r

is the nJ × 1 uniform probability vector over pages in 

block J ([1/nJ]nJ×1), and the personalization vector Jv
r

is the nJ × 1 vector 

whose elements are all zero except the element corresponding to the root node 
(page) of block J, which is also the root page of the host, whose value is 1. 

Estimating the Relative Importance of Each Block This step computes
the relative importance, or BlockRank, of each block. Assume there are k
blocks in the Web. To compute BlockRanks, we first create the block graph 
B, where each vertex in the graph corresponds to a block in the Web graph. 
An edge between two pages in the Web is represented as an edge between the 
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corresponding blocks (or a self-edge, if both pages are in the same block).
The edge weights are determined as follows: the weight of an edge between
blocks I and J is defined to be the sum of the edge-weights from pages in I to
pages in J in the Web graph, weighted by the local PageRanks of the linking
pages in block I. That is, if A is the Web graph and li is the local PageRank of
page i in block I, then weight of edge BIJ is given by:

∑
∈∈

⋅=

JjIi
iijIJ lAB

,

.

From this expression, the block matrix B = [BIJ]k×k can be written in matrix
notation as follows. Define the local PageRank matrix L to be the m × k ma-

trix whose columns are the local PageRank vectors Jl
r

, i.e.
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Define the matrix S to be the m×k matrix that has the same structure as L,
but whose nonzero entries are all replaced by 1. Then the block matrix B can
be computed as:

B = LTAS.
Once we have the k×k transition matrix B, we may use the standard PageR-

ank algorithm on this reduced matrix to compute the BlockRank vector b
r

:

b
r

= pageRank(B, kv
r

, kv
r

),

where kv
r

is the uniform k-vector [1/k]k×1.

Approximating Global PageRank using Local PageRank and Block-
Rank This step finds an estimate to the global PageRank vector x

r

. At this
point, we have two sets of rankings. Within each block J, we have the local

PageRanks Jl
r

of the pages in the block. We also have the BlockRank vector

b
r

, whose elements bJ are the BlockRank for each block J, measuring the
relative importance of the blocks. We may now approximate the global Pag-
eRank of a page j ∈ J as its local PageRank lj, weighted by the BlockRank bJ

of the block in which it resides. That is,
x(0)

j = lj · bJ.

In matrix notation, this is:

bLx
r

r

=
)0( .
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Recall that the local PageRanks of each block sum to 1. Also, the Block-
Ranks sum to 1. It is obvious that the above approximate global PageRanks 
will also sum to 1 (Kamvar et al. 2003). Therefore, we may use the approxi-

mate global PageRank vector )0(x
r

 as a start vector for the standard PageRank 
algorithm. 

Computing Global PageRank In order to compute the true global 

PageRank vector x
r

 from the approximate PageRank vector )0(x
r

, we simply 
use it as a start vector for standard PageRank. That is: 

x
r

 = pageRank(G, )0(x
r

, Jv
r

) 

where G is the graph of the Web, and Jv
r

 is the uniform distribution over root 

nodes. 
(Kamvar et al. 2003) claimed the advantages of the BlockRank algorithm 

as follows: 

1. A major speedup of the algorithm comes from caching effects. All of the 
host-blocks in the crawl are small enough so that each block graph fits in 
main memory, and the vector of ranks for the active block largely fits in 
the CPU cache. As the full graph does not fit entirely in main memory, the 
local PageRank iterations thus require less disk i/o than the global compu-
tations. 

2. In the BlockRank algorithm, the local PageRank vectors for many blocks 
will converge quickly; thus the computations of those blocks may be ter-
minated after only a few iterations. 

3. The local PageRank computations in step 1 of the BlockRank algorithm 
can be computed in a completely parallel or distributed fashion. 

4. In several scenarios, the local PageRank computations (e.g., the results of 
Step 1) can be reused during future applications of the BlockRank algo-
rithm. 

The experiments in (Kamvar et al. 2003) showed that the BlockRank algo-
rithm yielded significant speedup over the standard PageRank. 

4.6 Web Page Scoring Systems (WPSS) 

As discussed before, page ranking is a fundamental step towards the construc-
tion of effective search engines for both generic (horizontal) and focused 
(vertical) search. But the original PageRank algorithm only considers the 
situation where the Web surfer either follows the links included in the current 
visiting page or jump to another page (node) in the Web graph. The surfer 
will never go back along the reverse links from the current visiting page or 
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stay on the current page. In (Diligenti et al. 2002), a general framework for
Web page scoring systems (WPSS) was proposed based on a random walk
model. This random walk considers all possible actions the surfer may take.
Therefore the original PageRank and HITSalgorithms are all the special cases
of this general framework. Furthermore, this general framework can derive
different algorithms for effective horizontal and vertical searches.

In the WPSS, a complete model of the behavior of a user surfing the Web is
considered. We assume that a Web surfer can perform one out of four atomic
actions at each step of his/her traversal of the Web graph (Diligenti et al.
2002):

• j jump to a node of the graph;
• l follow a hyperlink from the current page;
• b follow a back-link (a hyperlink in the inverse direction);
• s stay in the same node.

Then the set of the atomic actions used to move on the Web is defined as O
= {j, l, b, s}. From these surfer’s actions, the surfer’s behaviour can be mod-
elled by a set of probabilities which depend on the current page:

• x(l|q) the probability of following one hyperlink from page q,
• x(b|q) the probability of following one back-link from page q,
• x(j|q) the probability of jumping from page q,
• x(s|q) the probability of remaining in page q.

These values must satisfy the normalization constraint

∑
∈

=

Oo

qox 1)|(

Most of these actions need to specify their targets. Assuming that the
surfer’s behavior is time-invariant, then we can model the targets for jumps,
hyperlink or back-link choices by using the following parameters (Diligenti et
al. 2002):

• x(p|q, j) the probability of jumping from page q to page p;
• x(p|q, l) the probability of selecting a hyperlink from page q to page p; this

value is not null only for the pages p linked directly by page q, i.e. p∈
ch(q), being ch(q) the set of the children of node q in the graph G;

• x(p|q, b) the probability of going back from page q to page p; this value is
not null only for the pages p which link directly page q, i.e. p∈ pa(q), be-
ing pa(q) the set of the parents of node q in the graph G.

These sets of values must satisfy the following probability normalization
constraints for each page q ∈ G:



66      4 PageRank Related Algorithms 

∑
∈

=

Gp

jqpx 1),|( , ∑
∈

=

)(

1),|(
qchp

lqpx , ∑
∈

=

)(

1),|(
qpap

bqpx . 

The above model considers a temporal sequence of actions performed by 
the surfer. The probability that the surfer is located in page p at time t+1, 
xp(t+1), can be modelled using the following equation: 

∑
∈

⋅=+

Gq
qp txqpxtx )()|()1( , 

where the probability x(p|q) of going from page q to page p is obtained by 
considering the action which can be performed by the surfer. Considering all 
possible actions that surfer may take, the equation can be rewritten as  

).()|()()|(),|(                 

)()|(),|()()|(),|()1(

txpsxtxqbxbqpx

txqlxlqpxtxqjxjqpxtx

p
Gq

q

Gq
q

Gq
qp

⋅+⋅⋅

+⋅⋅+⋅⋅=+

∑
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∈
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S

uppose the number of pages in the Web graph G is N. The page probabilities 
in G at time t can be collected in a N-dimensional vector x(t). Actually, the 
above probability update equations can be rewritten in a matrix form. To this 
end, firstly we define some matrices (Diligenti et al. 2002): 

• the forward matrix ∆ whose element (p, q) is the probability x(p|q, l); 
• the backward matrix Γ collecting the probabilities x(p|q, b); 
• the jump matrix Σ which is defined by the jump probabilities x(p|q, j). 

The forward and backward matrices are related to the Web adjacency ma-
trix A whose entries are 1 if page p links page q. In particular, the forward 
matrix ∆ has non-null entries only in the positions corresponding to 1s in ma-
trix A, and the backward matrix Γ has non null entries in the positions corre-
sponding to 1s in AT.  

Further, we can define other matrices that collect the probabilities of taking 
one of the possible actions from a given page q. These are N×N diagonal ma-
trices defined as follows: Dj whose diagonal values (q, q) are the probabilities 
x(j|q), Dl collecting the probabilities x(l|q), Db containing the values x(b|q), 
and Ds having on the diagonal the probabilities x(s|q). Hence, the above prob-
ability update equations can be written in matrix form as 

x(t+1) = (Σ · Dj)
Tx(t) + (∆ · Dl)

Tx(t) + ( Γ · Db)
Tx(t) + (Ds)

Tx(t). 
If we define the transition matrix T that is used to update the probability 

distribution as follows: 
T = (Σ · Dj + ∆ · Dl

  +  Γ · Db + Ds)
T.

Then the above probability update equation can be written as

x(t + 1) = T · x(t). (4.4)
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Starting from a given initial probability distribution x(0), this probability
update equation can be applied recursively to compute the probability distri-
bution at a given time step t yielding

x(t) = T t· x(0).
The absolute page rank for the pages on the Web is then the stationary

probability distribution of this recursive procedure. (Diligenti et al. 2002)
gave the following proposition that guarantees the convergence of the recur-
sive operation. Readers who are interested in the proof detail of this proposi-
tion can refer to (Diligenti et al. 2002).

PROPOSITION. If x(j|q) ≠ 0 and x(p|q, j) ≠ 0, ∀ p, q ∈ G, then lim t→ ∞

x(t) = x*, where x* does not depend on the initial state vector x(0).
Uniform Jump Probabilities In the application of this general

framework, some assumptions can be introduced on the probability matrices.
A possible choice is to consider some actions to be independent on thecurrent
page. A first choice is the uniform jump probability that is independent on the
starting page q. This choice models a surfer who decides to make random
jumps from a given page to another page with uniform probability. Thus, the
jump matrix Σ has all the entries equal to x(p|q, j) = x(p|j) = 1/N. Moreover,
we also suppose that the probability of choosing a jump among the available
actions does not depend on the page, i.e. x(j|p) = dj, ∀ p∈ G. Under these two
assumptions, the probability update equation becomes

x(t + 1) = (dj / N)·Λ + (∆ · Dl + Γ · Db + Ds)
T x(t)

since (Σ · Dj ) T · x(t) = (dj / N)·Λ as 1)( =∑
∈

tx
Gp p , where Λ is a N-

dimensional vector whose entries are all 1s. If we denote R = (∆ · Dl + Γ · Db

+ Ds)
T, it can be proved (see (Diligenti et al. 2002)) that the probability distri-

bution x(t) converges to
x* = (dj / N) (I – R)-1 · Λ

and the value of x* does not depend on the choice of the initial state vector
x(0).

Multiple State Model A model based on a single variable may not
capture the complex relationships among Web pages when trying to model
their importance. The probabilistic framework described above can also be
extended to a multivariable scheme by considering a pool of Web surfers,
each described by a single variable. These surfers can be used to simulate dif-
ferent Web browsing actions that reveal different relationships among Web
pages. In particular, each surfer is characterized by his/her own way of brows-
ing the Web modeled by using different parameter values in each state transi-
tion equation. These parameters represent different policies in evaluating the
absolute importance of the pages. Moreover, the surfers may interact by ac-
cepting suggestions from each other(Diligenti et al. 2002).
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In order to model the activity of M different surfers, (Diligenti et al. 2002) 

used a set of state variables )()( tx i
q  (i = 1, …, M) which represent the prob-

ability of each surfer i to be visiting page q at time t. The interaction among 
the surfers is modeled by a set of parameters which define the probability of 
the surfer k to accept the suggestion of the surfer i, thus jumping from the 
page he/she is visiting to the one visited by the surfer i. This interaction hap-
pens before the choice of the actions described previously. If we hypothesize 
that the interaction does not depend on the page the surfer k is currently visit-
ing, the degree of interaction with the surfer i is modeled by the value b(i|k) 
which represents the probability for the surfer k of jumping to the page visited 
by the surfer i. These values must satisfy the probability normalization con-

straint ∑
=

=

M

s
ksb

1
1)|( . 

Before taking any action, the surfer i probably repositions himself/herself 
in page p looking at the suggestions of the other surfers. This probability is 
computed as 

∑
=

=

M
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s
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i
p txisbtv

1

)()( )()|()( . 

Due to the action taken by the surfer i at time t, the probability distribution 

)1()(
+tx i

p  is computed by replacing )()( tx i
p  with )()( tv i

p  in the original prob-

ability update equation. Thus, the transition function is defined as follows: 
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, 

i = 1, …, M. 
These equations can also be expressed in matrix format. We define a M×M

matrix B which collects the values b(i|k). Matrix B is also referred as interac-
tion matrix. For each surfer i, his/her own forward, backward and jump matri-

ces are denoted as ∆(i), Γ(i), Σ(i), and the action matrices are denoted as )(i
j���� , 

)(i
l���� , )(i

b���� , )(i
s����  respectively. Thus the transition matrix for the surfer i is 

defined as  

T (i) = (Σ(i) · )(i
j���� + ∆(i) · )(i

l���� +  Γ(i) · )(i
b����  + )(i

s���� ) T.

Using these definitions, the set of M interacting surfers can be described as 
a set of matrix equations as follows: 
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From this expression, it can be easily seen that if the surfers are independ-
ent on each other, i.e. b(i|i) = 1 and b(i|j) = 0 for i ≠ j, this model is then re-
duced to the original model (4).

The two models (4) and (5) can be used to derive various algorithms for
page ranking. In (Diligenti et al. 2002) two kinds of page ranking situations
were considered: horizontal WPSS and vertical WPSS. Horizontal WPSSs do
not consider any information on the page contents and produce the rank vec-
tor using just the topological characteristics of the Web graph. Vertical WPSSs
aim at computing a relative ranking of pages when focusing on a specific
topic. As indicated in (Diligenti et al. 2002) the original PageRank and HITS
algorithms, which are the representatives of horizontal WPSS, are all the spe-
cial cases of the general framework (4) and (5).

As the two representatives of horizontal WPSS, PageRank and HITS have
their own advantages and disadvantages. The PageRank is stable, it has a well
defined behavior because of its probabilistic interpretation and it can be ap-
plied to large page collections without canceling the influence of the smallest
Web communities. For HITS, the hub and authority model can capture more
than PageRank the relationships among Web pages. On the other hand, Pag-
eRank is sometimes too simple to take into account the complex relationships
of Web page citations. HITSis not stable, only the largest Web community in-
fluences the ranking, and this does not allow the application of HITS to large
page collections. It is amazing that the above general probability framework
(4) and (5) can derive a new algorithm that includes the advantages of both
approaches. In (Diligenti et al. 2002), it was called PageRank-HITS model.
The derivation of this model is described as follows (Diligenti et al. 2002).

We employ two surfers, each one implementing a bidirectional PageRank
surfer. We assume that surfer 1 either follows a back-link with probability x(1)

(b|p) = d(1) or jumps to a random page with probability x(1)(j|p) = 1 – d(1), ∀p
∈ G. Whereas surfer 2 either follows a forward link with probability x(2)(l|p) =
d(2) or jumps to a random page with probability x(2)(j|p) = 1 – d(2)

∀p ∈ G. The
interaction between the surfers is described by the matrix

⎥
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⎤
⎢
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⎡
=

01

10
B .
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The interpretation of the interactions represented by this matrix is that surfer 1 
consider surfer 2 as an expert in discovering authorities and always moves to 
the position suggested by that surfer before acting. On the other hand, surfer 2 
considers surfer 1 as an expert in finding hubs and always moves to the posi-
tion suggested by that surfer before choosing the next action. In this case, the 
equation (5) becomes 
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If we assume the independence of parameters x(1)(p|q, b) and x(2)(p|q, l) on 
the page p, then it holds that ∆(1)T = AT · Θ,  Γ(2)T = A · Ω, where Ω is the di-
agonal matrix with element (p, p) equals to 1 / pa(p) and Θ is the diagonal 
matrix with the element (p, p) equals to 1/ ch(p). Therefore, we have   
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As indicated in (Diligenti et al. 2002), this page rank is stable, the score 
sum up to 1 and no normalization is required at the end of each iteration. 
Moreover, the two state variables can capture and process more complex rela-
tionships among pages. In particular, if we set d(1) = d(2) = 1, the above equa-
tions will yield a normalized version of HITS.  

For vertical WPSS, it relies on the representation of the page content with 
set of features, such as a set of keywords, and on a classifier which is used to 
assess the degree of relevance of the page with respect to the topic of interest. 
In (Diligenti et al. 2002), this vertical WPSS was also called focused PageR-
ank. The idea of it is as follow (Diligenti et al. 2002). In the PageRank 
framework, when choosing to follow a link in a page q each link has the same 
probability 1 / ch(q) to be followed. Instead of the random surfer model, in 
the focused domain we can consider the more realistic case of a surfer who 
follows the links according to the suggestions provided by a page classifier. If 
the surfer is located at page q and the pages linked by page q have scores 
s(ch1(q)), …, s(chhq (q)) by a topic classifier where hq is the number of chil-
dren of q, the probability of the surfer to follow the i-th link is defined as  
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Thus the forward matrix ∆ will depend on the classifier outputs on the tar-
get pages. Hence, the modified equation to compute the combined page
scores using a PageRank-like scheme is

∑
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where x(p|q, l) is computed as in the above equation (6).
This scoring system removes the assumption of complete randomness of

the underlying Web surfer. In this case, the surfer is aware of what he/she is
searching, and he/she will trust the classifier suggestions following the links
with a probability proportional to the score of the page the links leads to. This
allows us to derive a topic-specific page rank.

It can be seen from the above discussions that the general probability
framework (4) and (5) model considers all actions that a Web surfer may take,
and many page ranking algorithms such as the original PageRank and HITS
can be derived from this framework. The experimental results in (Diligenti et
al. 2002) support the effectiveness of this framework.

4.7 The Voting Model

The original PageRank algorithm, as well as other improved ones, was origi-
nally based on a surfing model as discussed before. Actually, there are also
other models that can be used to derive various Web page rank algorithms.
Particularly, if a new derived algorithm from other models can also subsume
the original PageRank, this new algorithm can then be considered as the ex-
tension of the PageRank algorithm and will have wider application ar-
eas.(Lifantsev 2000) proposed such a model that ranks Web pages froma dif-
ferent angle. This model was named voting model in(Lifantsev 2000). It
subsumes the surfing model providing natural trivially converging computa-
tion of more different types of ranks, and provides a new meaning for the pa-
rameters and the results of the surfing model.

This voting model is mainly for ranking authority pages. The idea of this
model is described as follows in (Lifantsev 2000). The nodes/pages in the
Web page graph have a certain number of votes at their disposal. A node can
distribute its votes among other nodes (including itself) either by assigning a
portion of the votes to a destination node, or by giving a portion of the votes
to a destination node for the latter to decide how to distribute it. The authority
rank of a node is then the number of votes eventually assigned to it. The votes
can be fractional. The reason why this model is called voting model is that it
is a generalization of direct and representative voting system: a node can use
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its votes directly or can give them to a representative to manage on behalf of 
the node; any representative in turn can also use all the votes it gets either di-
rectly or indirectly by giving them to another representative (Lifantsev 2000).  

Suppose the set of nodes in the Web page graph is N. The voting model as-
signs each node a certain number of initial votes. We denote the total number 
of votes as |N|, and represent these initial votes by the column initial votes 

vector G = (gn) such that || Ng
Nn n =∑

∈

,  gn ∈ [0, |N|] for n∈ N. We assume 

gn = 1 for n∈ N if not stated otherwise, i.e. we usually assume that all the 
nodes are equal at the beginning. 

The votes a node has are then divided and transmitted along the links be-
tween the nodes. The votes are either assigned to a node or trusted to a node 
to manage. The vote propagations can be represented by the vote assignment 
matrix VA = (ann’) and the vote trust matrix VT = (tnn’) such that ann’ ∈ [0, 1] is 
the fraction of votes assigned to node n by node n’, tnn’ ∈ [0, 1] is the fraction 

of votes trusted to n by n’, and they satisfy ]1,0[)( '' ∈+∑
∈Nn nnnn ta  for any 

n’∈ N. In other words, for each node the trust and assignment fractions on its 
out-links form an incomplete probability distribution. These two matrices are 
also called vote distribution matrices. Please note that the incomplete matri-
ces correspond to the cases when some nodes waste some fraction of the 
votes they are given. It is possible that a node assigns some votes it has to it-
self, and it is also possible that a node trusts some votes it has back to itself. 

Then the computation of the total votes eventually assigned to the nodes, 
which is represented by the column vote vector V, can be conducted in the 
following way (Lifantsev 2000): 

V0 = 0 
U0 = G 

Vi+1 = Vi + VA ⋅ Ui, 

Ui+1 = VT ⋅ Ui,

where 0 is the column vector of all zeros and Ui  is the vector representing the 
number of votes given to each node to manage on the ith stage of the compu-
tation. Theoretically, the vote vector V, which is also the authority rank vec-
tor, is equal to V∞. 

One possible problem with this computation is that if there is a loop in the 
graph induced by VT  with all the edges marked with 1, we will not be able to 
reach a state where V∞ = 0, which is required for convergence. To remedy this 
problem, we can take one of the following three ways (Lifantsev 2000): 

1. We can introduce a vote transfer degradation factor d that is slightly less 
than 1 and replace Ui+1 = VT ⋅ Ui with Ui+1 = d VT ⋅ Ui  in the above compu-
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tation. Such degradation factor is also good if we want to encourage nodes
to assign the votes directly rather than entrust them.

2. We can stop the computation when Ui+1 gets close enough to Ui.
3. We can also require that VT should not have elements that are equal to 1. It

is reasonable in practice, i.e. a node does not trust all its votes to just one
other node, it can assign at least some fraction of votes to itself.

As indicated in (Lifantsev 2000), this computation scheme has very easy to
ensure and verify convergence conditions. The reason is that we just transfer
and assign the initial votes according to VT and VA until the not yet assigned
votes Ui get close enough to 0. It is different from the surfing model where all
the surfers get reshuffled at each iteration and we have to reach a fix point.

There is a connection between the ranks computed using the above voting
model and the surfing model. Before introducing the theorem regarding this
connection, firstly we summarize the surfing model that is used in theoriginal
PageRank algorithm.

Surfing Model In this model, there are surfers that go from one node
to another using the links; the more surfers a node ‘has,’ the higher its author-
ity rank. Initially, we suppose there are |N| surfers that can split themselves
into fractional surfers to follow different paths. They are initially distributed
evenly among all the nodes if we assume that all nodes are a priori equally
popular. These initial surfers can be represented by a column start surfers vec-

tor S = (sn) such that || Ns
Nn n =∑

∈

, sn ∈ [0, |N|] for n ∈ N. we assume sn =

1 for n ∈ N if not stated otherwise.
The surfers then travel along the links dividing themselves according to

propagation fractions associated with the links. The propagation fractions are
represented by a surfer propagation matrix P = (pnn’) such that pnn’∈ [0, 1] is

the fraction of surfer directed from node n’ to n and ]1,0[' ∈∑
∈Nn nnp for

any n’ ∈ N. Therefore, for each node the propagation fractions of its out-links
form an incomplete probability distribution. Such matrices are also called
column distribution matrices. Please note that it is possible that a nodedirects
its surfers back to itself, and that it directs its surfers equally or non-equally
along all of its out-links. As we know, the original PageRank algorithm di-
vides all the surfers equally among all the outgoing links.

We represent the authority ranks by the column rank vector R, then the au-
thority ranks are computed as follows:

R0 = S
Ri+1 = e P ⋅ Ri + (1 – e) S

where e is the exploration probability of surfers.
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As in the PageRank algorithm, we always reach a fixpoint such that R∞

(theoretically) is the final page rank of pages, while R∞ is the principal eigen-
vector of matrix e P + (1 – e) / |N| S⋅ 1T with the eigenvalue of 1, where 1 is 
the vector consisting of all 1s.  

When P is incomplete column distribution matrix, i.e. 1' <∑
∈Nn nnp , we 

can still compute the ranks as the principal eigenvector of the same matrix as 
above, except that its eigenvalue is going to be less than 1. It then requires 
that the Ri  is to be normalized up at each iteration step, so that we can pre-
vent the fixpoint R∞ from becoming a zero vector. Therefore, the algorithm is 
improved as  

R0 = S
Ri+1 = αi (e P ⋅ Ri + (1 – e) S ),

where αi is such as to make || Ri+1||1 = |N|. 
This method can be slightly modified as follows: 

R0 = S 
Ri+1 = e P ⋅ Ri + αi S,     

where αi is such as to make || Ri+1||1 = |N|. The difference here is that we com-
pensate for the loss of unpropagated surfers by adding surfers proportionally 
to S, rather than by consistently increasing the number of surfers in each node 
by the same factor. This algorithm is based on the surfers who surf the Web 
along the links, so it is named surfing model. 

 (Lifantsev 2000) indicated the strong connection between the ranks com-
puted by the surfing and voting models: 

Theorem If P is a column distribution matrix, then the surfer rank vec-
tor R = P⋅R∞, where R∞ is omputed using the modified eigenvalue method 
with exploration probability e ∈ (0, 1) and some start surfers vector S, is 
equal to the vote vector V∞ which is computed for VT = eP and VA = (1 – e)P
with G = S in the voting model.   

Readers who are interested in the proof details of this theorem please refer 
to (Lifantsev 2000). 

From this theorem, it can be seen that (Lifantsev 2000): 

• The surfing model is a sub-case of the voting model. 
• The exploration probability e is the fraction of the votes (authority ranks) 

that a node trust the destinations of its out-links to manage, whereas 1 – e
is the fraction of the votes (ranks) a node assigns directly to the destina-
tions of its out-links. 

• In the case of the surfing model, the trust-assignment split is set for all the 
nodes uniformly by the model. In the voting model, each node can itself 
potentially set the trust-assignment split individually for each of its out-
links. In practice, this can possibly be implemented by extracting some 
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hints about the intended trust-assignment split from the text surrounding
the links).

• The surfing model is a bit unnatural in that it corresponds to the voting
model where each node trusts some fraction of the votes it has back to it-
self to redistribute these votes again and again. Hence, we can construct a
more natural model that uses exactly the same data as the surfing model by
letting VT = eP and VA = (1 – e)P except that we clean VT ‘s diagonal add-
ing those “self-trusts” to VA’s diagonal.

In general, the voting model seems to be better suited for collection of
various statistics (refer to (Lifantsev 2000)) as it relies on simple direct itera-
tive computation where at each iteration smaller and smaller corrections are
added to the result, whereas the surfing model is based on fixpoint iterative
computation with non-trivial convergence criteria where at each iteration all
the results are recomputed.

4.8 Using Non-Affliated Experts to Rank Popular Topics

The original PageRank algorithm, as well as other improved or derived page
ranking algorithms discussed before, tries to globally rank Web pages. This
ranking is query independent. Although the absolute page ranking is helpful
in improving Web searching, in practical use, users would more likely to get
the page rank with respect to user queries or a given page. Since PageRank is
query-independent it cannot by itself distinguish between pages that are au-
thoritative in general and pages that are authoritative on the query or given
page topic. Therefore, it is necessary to consider page ranking that is related
to user queries or a given page. In this section and next section, we will intro-
duce two approaches that were proposed to rank Web pages with respect to
the user query and a given page. This kind of page ranking algorithm can be
considered as a complimentary to the original page ranking algorithms.

In (Bharat and GA 2001), an approach named Hilltop, was proposed to
rank Web pages that are to be related to a user query topic. The idea of this
approach is based on the same assumptions as other connectivity algorithms
such as HITS and PageRank, that is the number and quality of the sources re-
ferring to a page are a good measure of the page’s quality. The difference be-
tween this approach and other algorithms is that it only uses “expert”
sources/pages to measure the page’s quality. An expert page is thepage that is
about a certain topic and has links to many non-affiliated pages on that topic.
The expert pages are created with the specific purpose of directing people to-
wards resources.
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For a user’s query, this approach first computes a list of the most relevant 
experts on the query topic. Then relevant links are identified within the se-
lected set of experts, and target Web pages are identified as well by following 
these relevant links. The targets are then ranked according to the number and 
relevance of non-affiliated experts that point to them. Thus, the score of a tar-
get page reflects the collective opinion of the best independent experts on the 
query topic. Accordingly, the Hilltop algorithm consists of two phases: expert 
lookup and query processing. 

Expert Lookup An expert page needs to be objective and diverse: 
that is, its recommendations should be unbiased and point to numerous non-
affiliated pages on the subject. Therefore, in order to find the experts, it is 
necessary to detect when two sites belong to the same or related organiza-
tions. (Bharat and GA 2001) defined two hosts as affiliated if one or both of 
the following is true: 

• They share the same first three octets of the IP address. 
• The rightmost non-generic token in the hostname is the same. 

Tokens are considered as the substrings of the hostname delimited by “.” 
(period). A suffix of the hostname is considered generic if it is a sequence of 
tokens that occur in a large number of distinct hosts. For instance, “.com” and 
“.co.uk” are domain names that occur in a large number of hosts and are 
hence generic suffixes. Given two hosts, if the generic suffix in each case is 
removed and the subsequent rightmost token is the same, we consider them to 
be affiliated. For example, given two hostname “www.ibm.com” and 
“ibm.co.mx”, we remove the generic suffixes “.com” and “.co.mx” respec-
tively. The resulting rightmost token is “ibm”, which is the same in both 
cases. Hence they are considered to be affiliated. Optionally, we could require 
the generic suffix to be the same in both cases. 

The affiliation relation is transitive: if A and B are affiliated and B and C 
are affiliated then we can infer that A and C to be affiliated even if there is no 
direct evidence of the fact. In practice, this may cause some non-affiliated 
hosts to be classified as affiliated. This may also happen, for example, if mul-
tiple, independent Web sites are hosted by the same service provider. How-
ever, this is acceptable since this relation is intended to be conservative 
(Bharat and GA 2001). 

In a preprocessing step, the Hilltop algorithm (Bharat and GA 2001) con-
structs a host-affiliation lookup. Using a union-find algorithm we group hosts 
that either share the same rightmost non-generic suffix or have an IP address 
in common into sets. Every set is given a unique identifier. The host-
affiliation lookup maps every host to its set identifier or to itself when there is 
no set. This is used to compare hosts. If the lookup maps two hosts to the 
same value then they are affiliated; otherwise they are nonaffiliated. 
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After the preprocessing step, we can turn to selecting experts from a search
engine’s database of pages. In (Bharat and GA 2001), the AltaVista’s crawl
from April 1999 was used. This is done as follows:

“Considering all pages with out-degree greater than a threshold, k
(e.g., k = 5), we test to see if these URLs point to k distinct nonaffili-
ated hosts. Every such page is considered an expert page.”

If a broad classification (such as Arts, Science, Sports, etc.) is known for
every page in the search engine database then we can additionally require that
most of the k non-affiliated URLs discovered in the previous step point to
pages that share the same broad classification. This allows us to distinguish
between random collections of links and resource directories.

To locate expert pages that match user queries, Hilltop (Bharat and GA
2001) created an inverted index to map keywords to experts on which they
occur. In doing so only text contained within “key phrases” of the expert is
indexed. A key phrase is a piece of text that qualifies one or more URLs in the
page. Every key phrase has a scope within the document text. URLs located
within the scope of a phrase are said to be “qualified” by it. For example, the
title, headings (e.g., text within a pair of <H1> </H1> tags) and URL anchor
text within the expert page are considered key phrases. The title has a scope
that qualifies all URLs in the document. A heading’s scope qualifies all URLs
until the next heading of the same or greater importance. An anchor’s scope
only extends over the URL it is associated with. The inverted index is organ-
ized as a list of match positions within experts. Each match position corre-
sponds to an occurrence of a certain keyword within a key phrase of a certain
expert page. All match positions for a given expert occur in sequence for a
given keyword. At every match position we also store:

1. An identifier to identify the phrase uniquely within the document.
2. A code to denote the kind of phrase it is (title, heading or anchor).
3. The offset of the word within the phrase.

In addition, for every expert Hilltop maintains the list of URLs within it (as
indexes into a global list of URLs), and for each URLthe identifiers of the key
phrases that qualify it are also maintained. To avoid giving long key phrases
an advantage, the number of keywords within any key phrase is limited, such
as to 32.

Query Processing The first step that responses to a user query is to de-
termine a list of N (e.g. N = 200) experts that are the most relevant for that
query. Then we rank results by selectively following the relevant links from
these experts and assigning an authority score to each such page. The details
of this query processing procedure are presented as follows (Bharat and GA
2001).
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For an expert to be useful in response to a query, the minimum requirement 
is that there is at least one URL which contains all the query keywords in the 
key phrases that qualify it. A fast approximation is to require all query key-
words to occur in the document. 

The score of an expert is computed as a 3-tuple of the form (S0, S1, S2). Let 
k be the number of terms in the input query q. The component Si of the score 
is computed by considering only key phrases that contain precisely k - i of the 
query terms. For example, S0 is the score computed from phrases containing 
all the query terms. That is  

Si = Σ {key phrases p with k - i query terms} LevelScore(p) * FullnessFactor(p, q), 

where LevelScore(p) is a score assigned to the phrase by virtue of the type of 
phrase it is. For example, in (Bharat and GA 2001) a LevelScore of 16 was 
used for title phrases, 6 for headings and 1 for anchor text. This was based on 
the assumption that the title text is more useful than the heading text, which is 
more useful than an anchor text match in determining what the expert page is 
about. FullnessFactor(p, q) is a measure of the number of terms in p covered 
by the terms in q. Let plen be the length of p. Let m be the number of terms in 
p which are not in q (i.e., surplus terms in the phrase). Then, FullnessFac-
tor(p, q) is computed as follows: 

• If m <= 2, FullnessFactor(p, q) = 1. 
• If m > 2, FullnessFactor(p, q) = 1 – (m  –  2) / plen. 

The goal of the expert score is to prefer experts that match all of the query 
keywords over experts that match all but one of the keywords, and so on. 
Hence experts are ranked first by S0. We break ties by S1 and further ties by 
S2. The score of each expert is converted to a scalar by the weighted summa-
tion of the three components: 

Expert_Score = 232 * S0 + 216 * S1 + S2. 
From the top N (e.g. N = 200) experts selected from their expert scores, we 

can then examine the pages they point to. These pages are called targets. It is 
from this set of targets that we select top ranked pages regarding the user 
query. For a target to be considered it must be pointed to by at least two ex-
perts on hosts that are mutually non-affiliated and are not affiliated to the tar-
get. For all qualified targets we compute a target score T in three steps 
(Bharat and GA 2001): 

1. For every expert E that points to target T we draw a directed edge (E,T). 
Consider the following “qualification” relationship between key phrases 
and edges: 

• The title phrase qualifies all edges coming out of the expert. 
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• A heading qualifies all edges whose corresponding hyperlinks occur in the
document after the given heading and before the next heading of equal or
greater importance.

• A hyperlink’s anchor text qualifies the edge corresponding to the hyper-
link.

For each query keyword w, let occ(w, T) be the number of distinct key
phrases in E that contain w and qualify the edge (E,T). We define an “edge
score” for the edge (E,T) represented by Edge_Score(E,T), which is computed
as:

• If occ(w, T) is 0 for any query keyword then the Edge_Score(E,T) = 0
• Otherwise, Edge_Score(E,T)=Expert_Score(E)*( {query keywords w}

occ(w, T).

2. We next check for affiliations between expert pages that point to the same
target. If two affiliated experts have edges to the same target T, we then
discard one of the two edges. Specifically, we discard the edge which has
the lower Edge_Score of the two.

3. To compute the Target_Score of a target, we sum the Edge_Scores of all
edges incident on it.

Then the list of targets is ranked by Target_Score. Optionally, this list can
be filtered by testing if the query keywords are present in the targets. Option-
ally, we can match the query keywords against each target to compute a
Match_Score using content analysis, and combine the Target_Score with the
Match_Score before ranking the targets. (Bharat and GA 2001) evaluated this
Hilltop algorithm to demonstrate its advantages. Interested readers can refer
to this paper.

4.9 A Latent Linkage Information (LLI) Algorithm

The latent linkage information (LLI) algorithm was proposed in (Hou and
Zhang 2003), which is for ranking Web pages that are closely related to a
given page. The most commonly used methods for this kind of query comes
from scientific literature co-citation index algorithm (Garfield 1972; Garfield
1979; Dean and Henzinger 1999; Hou and Zhang 2003). Although co-citation
based algorithms are simple and easy to implement, they are unable to reveal
the deeper relationships among the pages as they only take into consideration
the count of common hyperlinks among pages, page importance is not con-
sidered. LLI algorithm tried to reveal deeper relationships among pages for
finding more semantically related pages.
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The first step of this algorithm is to construct a Web page space (page 
source) for the given page u from link topology on the Web. Ideally, the page 
source that is a page set from which the relevant pages are selected should 
have the following properties: 

1. The size of the page source (the number of pages in the page source) is 
relatively small. 

2. The page source is rich in relevant pages. 

The best relevant pages of the given page, based on the statement in (Dean 
and Henzinger 1999), should be those that address the same topic as the 
original page and are semantically relevant to the original one. 

For a given page u, its semantic details are most likely to be given by its in-
view and out-view (Mukherjea and Hara 1997). The in-view is a set of parent 
pages of u, and out-view is a set of child pages of u. In other words, the rele-
vant pages with respect to the given page are most likely to be brought into 
the page source by the in-view and out-view of the given page. The page 
source for finding relevant pages, therefore, should be derived from the in-
view and out-view of the given page, so that the page source is rich in the re-
lated pages.  

The page source is constructed as a directed graph with edges indicating 
hyperlinks and nodes representing the following pages: 

1. Page u, 
2. Up to B parent pages of u, and up to BF child pages of each parent page 

that are different from u, 
3. Up to F child pages of u, and up to FB parent pages of each child page that 

are different from u.  

Fig. 4.3. Page source structure for the given page u
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The parameters B, F, BF and FB are used to keep the page source to a rea-
sonable size. In (Hou and Zhang 2003), B = FB = 200, F = BF = 40. This
page source structure is presented intuitively in Fig. 4.3. Let Pu be a set of
parent pages of u, Cu be a set of child pages of u. Page set BS composes of
children of pages in Pu. The maximum number of children each page in Pu

can bring into BS is BF. Similarly, page set FS composes of parents of pages
in Cu. The maximum number of parents each page in Cu can bring into FS is
FB.

Suppose the size of BS is m (e.g. the number of pages in BS is m) and size
of Pu is n, the sizes of FS and Cu are p and q respectively. Without loss of
generality, we also suppose m > n and p > q. The topological relationships be-
tween the pages in BS and Pu are expressed in a linkage matrix A, and the
topological relationships between the pages in FS and Cu are expressed in an-
other linkage matrix B. The linkage matrices A and B are concretely con-
structed as follows:

nmijaA
×

= )( where

⎩
⎨
⎧=

∈∈

.
,

otherwise0
,,ofchildaiswhen1 uPBS jpageipagejpageipage

ija

qpijbB
×

= )( where

⎩
⎨
⎧=

∈∈

.
,

otherwise0
,,ofparentaiswhen1 uCFS jpageipagejpageipage

ijb

These two matrices imply more beneath their simple definitions. In fact,
the ith row of matrix A can be viewed as the coordinate vector of page i (page
i ∈ BS) in an n-dimensional space spanned by the n pages in Pu, and the ith
row of matrix B can be viewed as the coordinate vector of page i (page i ∈
FS) in a q-dimensional space spanned by the q pages in Cu. Similarly, the jth
column of matrix A can be viewed as the coordinate vector of page j (page j
∈ Pu) in an m-dimensional space spanned by the m pages in BS. The meaning
is similar for the columns in matrix B. In other words, the topological rela-
tionships between pages are transferred, via the matrices A and B, to the rela-
tionships between vectors in different multi-dimensional spaces.

Since A and B are real matrices, there exist SVDs of A and B:
T

nnnmmm VUA
×××

Σ= , T
qqqppp XWB

×××
Ω= . As indicated above, the rows of

matrix A are coordinate vectors of pages of BS in an n-dimensional space.
Therefore, all the possible inner products of pages in BS can be expressed as

TAA , i.e. ( TAA )ij is the inner product of page i and page j in BS. Because of

the orthogonal properties of matrices U and V, we have TT UUAA ))(( ΣΣ= .
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Matrix UΣ is also an nm ×  matrix. It is obvious from this expression that 
matrix UΣ is equivalent to matrix A, and the rows of matrix UΣ could be 
viewed as coordinate vectors of pages in BS in another n-dimensional space. 
Since the SVD of a matrix is not a simple linear transformation of the matrix 
(Golub and Loan 1993), it reveals statistical regulation of matrix elements to 
some extent. Accordingly, the coordinate vector transformation from one 
space to another space via SVD makes sense. For the same reason, the rows of 
matrix VΣ T, which is an mn ×  matrix, are coordinate vectors of pages in Pu

in another m-dimensional space. Similarly, for matrix B, the rows of matrix 
WΩ are coordinate vectors of pages in FS in another q-dimensional space, 
and the rows of matrix XΩT are coordinate vectors of pages in Cu in another 
p-dimensional space. 

Next, we discuss matrices A and B separately. For the SVD of matrix A, 
matrices U and V can be denoted respectively as [ ] mmmmm uuuU

××
= ,...,, 21

and [ ] nnnnn vvvV
××

= ,...,, 21 , where ui (i = 1, … , m) is a m-dimensional vec-

tor T
imiii uuuu ),...,,( ,,2,1=  and vi (i = 1, … , n) is a n-dimensional vector 

T
iniii vvvv ),...,,( ,,2,1= . Suppose rank(A) = r and singular values of matrix A

are as follows: 
.0...... 121 ===>≥≥≥

+ nrr σσσσσ

For a given threshold ε ( 10 ≤< ε ), we choose a parameter k such 
that εσσσ ≥−

+ kkk /)( 1 . Then we denote [ ] kmkk uuuU
×

= ,...,, 21 , 

[ ] knkk vvvV
×

= ,...,, 21 , ),...,,( 21 kk diag σσσ=Σ , and T
kkkk VUA Σ= .  

From the SVD theorem in Chap. 2, the best approximation matrix Ak con-
tains main linkage information among the pages and makes it possible to filter 
those irrelevant pages, which usually have fewer links to the parents of given 
u, and effectively find relevant pages. In this algorithm, the relevance of a 
page to the given page u is measured by the similarity between them. For 
measuring the page similarity based on Ak, we choose the ith row Ri of the 
matrix UkΣk as the coordinate vector of page i (page i ∈ BS) in a k-
dimensional subspace S: 

),,...,,( 2211 kikiii uuuR σσσ=      i = 1, 2, …, m. (4.7)

For the given page u, since it is linked by every parent page, it is repre-
sented as a coordinate vector with respect to the pages in Pu: 

),...,,( 21 ngggu =  where 1=ig , ],1[ ni∈ . The projection of coordinate 

vector u in the k-dimensional subspace S is represented as 



4.9 A Latent Linkage Information (LLI) Algorithm 83

),...,,( 21 kkk ggguVu ′′′=Σ=′ , (4.8)

where iti

n

t
ti vgg σ∑

=

=′

1

, i = 1, 2, …,k.

The equations (7) and (8) map the pages in BS and the given page u into
the vectors in the same k-dimensional subspace S, in which it is possible to
measure the similarity (relevance degree) between a page in BS and the given
page u. The commonly used cosine similarity measurement is used for this
purpose, i.e. for two vectors ),...,,( 21 kxxxx = and

),...,,( 21 kyyyy = in a k-dimensional space, the similarity between them is

defined as

,
||||||||
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In this way, the similarity between a page i in BS and the given page u is
defined as

,
||||||||

||
),(

22 uR

uR
uRsimBSS

i

i
ii

′

′⋅
=′= i =1, 2,...,m. (4.9)

For the given selection threshold δ, the relevant pages in BS with respect to
the given page u is the set

BSR = { pi | δ≥iBSS , pi ∈ BS, i =1, 2, ..., m}.

In the same way, for the SVD of matrix T
qqqppp XWB

×××
Ω= , we suppose

rank(B) = t and singular values of matrix B are
.0...... 121 ===>≥≥≥

+ qtt ωωωωω For a given threshold ε

( 10 ≤< ε ), we choose a parameter l such that εωωω ≥−
+ lll /)( 1 . Then

we denote T
llll XWB Ω= , where

lpjil wW
×

= ][ , , lqjil xX
×

= ][ , , ),...,,( 21 ll diag ωωω=Ω .

The ith row R'i of the matrix WlΩl is the coordinate vector of page i (page i ∈
FS) in a l-dimensional subspace L:

),,...,,( 2211 liliii wwwR ωωω=′ i = 1, 2, …, p. (4.10)

The projection of coordinate vector u in the l-dimensional subspace L is
represented as
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 ),...,,( 21 lll ggguXu ′′′′′′=Ω=′′ , (4.11)

where 
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q
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,   i = 1, 2, …,l. 

Therefore, the similarity between a page i in FS and the given page u is 

,
||||||||

||
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22 uR

uR
uRsimFSS

i

i
ii

′′′

′′⋅′
=′′′=   i =1, 2,...,p. (4.12)

For the given selection threshold δ, the relevant pages in FS with respect to 
the given page u is the set 

FSR = { pi | δ≥iFSS , pi ∈ FS, i =1, 2, ..., p}. 

Finally, the relevant pages of the given page (URL) u are a page 
set FSRBSRRP ∪= . 

As indicated in (Hou and Zhang 2003), the complexity or computational 
cost of the LLI is dominated by the SVD computation of the linkage matrices A
and B. Without loss of generality, we suppose m = max(m, p) and n = max(n, 

q). Then the complexity of the LLI algorithm is )( 32 nnmO + (Golub and 

Loan 1993). If n << m, the complexity is approximately )( 2nmO . Since the 
number of pages in the page source can be controlled by the algorithm, and 
this number is relatively very small compared with the number of pages on 
the Web, the LLI algorithm is feasible for application. For experimental re-
sults of this algorithm, please refer to (Hou and Zhang 2003).  

Up to now, the HITS and PageRank algorithms we discussed, as well as 
their variants, are all based on Web page hyperlink analysis although they fo-
cus on different goals (i.e. globally rank Web pages and locally rank pages). It 
is clear from these discussions that hyperlinks among Web pages convey se-
mantic information that can be used to reveal deeper relationships among 
pages. It is also clear from these discussions that much effort has been made 
trying to unify hyperlink analysis within a uniform model. Another example 
of this effort can be found in (Ding et al. 2002), which used matrices to model 
hyperlink analysis in a general form. From this general form, HITS and Pag-
eRank can be derived as two extreme end cases of this form. For more details 
of this general form, please refer to (Ding et al. 2002) and other related pa-
pers. It can be seen that whatever efforts are being made, hyperlink analysis 
could incorporate with other Web page information analysis techniques, such 
as page content and Web access log file analysis, to improve various Web 
based applications.  



5 Affinity and Co-Citation Analysis Approaches

In this chapter, we present several Web community analysis approaches, such
as affinity, co-citation etc, for capturing underlying relationships among Web
pages. In Sect. 5.1, we start presenting a new Web page similarity measure-
ment, which incorporates hyperlink transitivity and page importance. Then,
Sect. 5.2 gives a hierarchical clustering algorithm based on page correlation
matrix. In Sect. 5.3, we adapt a concept of affinity and utilize it to represent
the relationship between two pages. The permutation of affinity matrix is util-
ized to achieve highest global affinity. Moreover, the affinity-based clustering
algorithms are given in this section. The Co-Citation algorithm is discussed in
detail in Sect. 5.4 and an extended algorithm is described as well.

5.1 Web Page Similarity Measurement

A Web page similarity usually refers to a certain page space. Since we are
concerned about clustering Web-searched results in this work, we focus on a
page space that is related to the user's query topics. The ideas and analysis
techniques in the following sections, however, could also be used to other
concerned Web spaces, such as those in (Weiss et al. 1996) and (Pitkow and
Pirolli 1997). In this section, we firstly establish a page source (space) that is
related to the query topics. Within this page source, we incorporate hyperlink
transitivity and page importance to propose a new page similarity measure-
ment.

5.1.1 Page Source Construction

The page source construction is based on the Web-searched results. For users,
they are usually concerned about a part of searched results; say the first r
highest-ranked pages returned by the search engine. From the hyperlink
analysis point of view, the pages that link to or are linked to these r highest-
ranked pages are also related to the query topics to some extent. Therefore,
the page source S with respect to user's query topics is constructed as follow:
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Step 1: Select r highest-ranked pages from the searched results to form a 
root page set R. 
Step 2: For each page p in R, select up to B pages, which point to p and 
whose domain names are different from that of p, and add them to the 
back vicinity set BV of R. 
Step 3: For each page p in R, select up to F pages, which are pointed to 
by p and whose domain names are different from that of p, and add them 
to the forward vicinity set FV of R. 
Step 4: Page source S is constructed by uniting sets R, BV, FV and adding 
original links between pages in S. 

Fig. 5.1. Structure of the page source S

In the above page source construction algorithm, parameters B and F are 
used to guarantee that the page source S is of a reasonable size. For example, 
we choose the value 200 for B and F from our experiment experience. When 
constructing sets BV and FV, it is required that for each page p in R, the do-
main names of its parent pages and child pages are different from the domain 
name of the page p. This requirement filters those parent and child pages 
coming from the same Website where the page p is located. The reason, as 
indicated in (Bharat and Henzinger 1998; Wang and Kitsuregawa 2001), is 
that the links within the same Website are more likely to reveal the inner 
structure than to imply a certain semantic relationship.  

During the page source construction procedure, it is possible to bring some 
mirror pages into the page source. There are several reasons for not being re-
quired to remove these mirror pages. Firstly, there is no standard currently to 
identify whether two pages are mirror pages or not just from their linkage 
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analysis, and identifying mirror pages will add extra computing cost. Sec-
ondly, if two pages are mirror pages, they have the same hyperlink structure
and are most likely to be clustered into one cluster, in which the user or an al-
gorithm can identify them easily. Therefore, keeping a proper mirror page re-
dundancy in the page source S is reasonable.

It is worth indicating that the Web pages and their linkage information re-
quired for page source construction could be obtained in many ways. For ex-
ample, the child pages of a certain page and their links can be directly ob-
tained from that page, while the parent pages of that page and their links can
be found by the functions provided by some Web browsers, such as thesearch
function link:URL provided by AltaVista and Google. Bharat et al (Bharat et
al. 1998) proposed a specific system to obtain linkage information from the
Web. Usually, Web search engines use crawlers (spiders) to obtain the Web
pages with hyperlink information, and the obtained information is stored in a
specific database for further use (Brin and L. Page 1998).

5.1.2 Page Weight Definition

The role each page plays in similarity measurement is different in a concerned
page source S. For instance, two kinds of pages need to be noticed. The first
one is the page whose out-link contribution to S (i.e. the number of pages in S
that are pointed to by this page) is greater than the average out-link contribu-
tion of all the pages in the page source S. Another kind is the page whose in-
link contribution to S (i.e. the number of pages in S that point to this page) is
greater than the average in-link contribution of all the pages in the page
source S. The pages of the first kind are called index pages in (Botafogo and
Shneiderman 1991) (hub pages in (Kleinberg 1999)), and those of the second
kind are called reference pages in (Botafogo and Shneiderman 1991) (author-
ity pages in(Kleinberg 1999)). These pages are most likely to reflect certain
topics related to the query within the concerned page source. If two pages are
linked by or linking to some pages of these kinds, these two pages are more
likely to be located in the same topic group and have higher similarity.

It also needs to be noticed that index Web pages in common sense, such as
personal bookmark pages and index pages on some special-purpose Web
sites, might not be the index pages in the concerned page source S if their out-
link contribution to S is below the average out-link contribution in S. For the
same reason, some pages with high in-degrees on the Web, such as home
pages of commonly used search engines, might not be the reference pages in
the concerned page source S. For simplicity, we filter the home pages of
commonly used search engines (e.g. Yahoo!, AltaVista, Google and Excite)
from the concerned page source S, since these pages are not related to any
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specific topics. To measure the importance of each page within the concerned 
page source, we define a weight for each page. 

For each page Pi in the page source S, similar to the HITS algorithm in 
(Kleinberg 1999), we associate a non-negative in-weight Pi,in and a non-
negative out-weight Pi,out with it. Due to the hyperlink transitivity in the page 
source, the in-weight and out-weight for the page Pi in S are iteratively calcu-
lated as follows (Kleinberg 1999): 
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In order to guarantee the convergence of the above iterative operations, it is 
required that the in-weight vector and out-weight vector are normalized after 
each iteration, i.e. 
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We denote the average in-weight of S as µ, and the average out-degree of S
as λ. That is  

)(/, SsizeP
SP

ini

i

∑
∈

=µ , )(/, SsizeP
SP

outi

i

∑
∈

=λ , 

where size(S) is the number of pages in S. Then the page weight for Pi is 
defined as  
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The page weight definition in (1) indicates that if a page's in-weight and 
out-weight in S are below their corresponding average values µ and λ, its 
weight will be less than 1, which means its influence to the similarity meas-
urement is relatively less. For the same reason, if a page's in-weight or out-
weight in S is above the average value (e.g. an index page or a reference 
page), its weight will be greater than 1 and its influence to the similarity 
measurement is relatively greater. In other words, the page weight defined in 
(1) reflects the importance of each page's role in the concerned page source. 
This page importance will be incorporated in the page similarity measure-
ment. 
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5.1.3 Page Correlation Matrix

For each Web page, its correlation with other pages, via linkages, is expressed
in two ways: one is out-links from it, another is in-links to it. In this work, the
similarity between two pages is measured by their own correlations with other
pages in the page source S, rather than being derived directly from the links
between them. For measuring the page correlation, we firstly give the follow-
ing definitions.

Definition 1. If page A has a direct link to page B, then the length of path
from page A to page B is 1, denoted as l(A,B) = 1. If page A has a link to page
B via n other pages, then l(A,B) = n+1. The distance from page A to page B,
denoted as sl(A,B), is the shortest path length from A to B, i.e. sl(A,B) =
min(l(A,B)). The length of path from a page to itself is zero, i.e. l(A,A) = 0. If
there are no links from page A to page B (direct or indirect), then l(A,B) = ∞.

It can be inferred from this definition that l(A,B) =∞ does not imply l(B,A)
= ∞, because there might still exist links from page B to page A in this case.

Definition 2. The correlation weight between two pages i and j (i ≠ j), de-
noted as wi,j, is the maximal weight of their weights, i.e. wi,j = max(wi,wj)
where wi and wj are the page weights for pages i and j respectively. If i = j, wi,j

is defined as 1.

The following definition defines how much two pages correlate with each
other if there is a direct link between them.

Definition 3. Correlation factor, denoted as F, 0<F<1, is a constant that
measures the correlation rate between two page with direct link, i.e. if page A
has a direct link to page B, then the correlation rate from page A to page B is
F.

How to determine the value of this correlation factor F to more precisely
reflect the correlation relationship between pages is beyond the scope of this
work. Further research could be done in this area. In this work, similar to the
work in (Weiss et al. 1996), the value of F is chosen as 1/2. That means if
page A has a direct link to page B, the correlation from page A to page B is
50%. It is argued that not every pair of pages that are hyperlinked has 50%
semantic relationship with each other. However, in the context of the Web,
the research focuses on finding certain statistical regularities from a large
number of pages. Therefore, certain imprecise relationship descriptions are
permitted as in (Weiss et al. 1996). For general purpose, we still use F in the
following algorithm to represent this correlation factor. It can be seen that hy-
perlinks between pages are used to measure the correlations between pages,
rather than to directly measure the similarities.
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With the above definitions, a correlation degree between any two pages 
can be defined. This correlation degree depends on the value of correlation 
factor F, the distance between the two pages (the farther the distance, the less 
the correlation degree), and the correlation weights of involved pages along 
the shortest path. The following definition gives this function. 

Definition 4. The correlation degree from page i to page j, denoted as cij, 
is defined as 
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where F are correlation factor, sl(i,j) is the distance from page i to page j, 
and wi,k1, wk1,k2, …, wkn,j are correlation weights of the pages i, k1, k2, …, kn, j
that form the distance sl(i,j), i.e. i → k1→ k2 → …→ kn → j. If i = j, then cij

is defined as 1. 
For the concerned page source S, we suppose the size of the root set R is m, 

the size of the vicinity set V = BV ∪ FV is n. Then the correlation degrees of 
all the pages in S can be expressed in a (m+n)×(m+n) matrix C = (cij)(m+n)×(m+n), 
called correlation matrix. This correlation matrix C is a numerical format that 
converts the hyperlinks (direct or indirect) between pages in S into the corre-
lation degrees, incorporating the hyperlink transitivity and page importance. 

The key for computing the correlation degree cij in (2) is the distance sl(i,j) 
between any two pages i and j in S. This distance can be computed via some 
operations on the matrix elements of a special matrix called primary correla-
tion matrix. The primary correlation matrix A = (aij)(m+n)×(m+n) is constructed as 
follows: 
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Based on this primary correlation matrix, the algorithm for computing the 
distance sl(i,j) between any two pages i and j is described as follows:  

Step 1: For each page i ∈ S, choose factor = F and go to Step 2; 
Step 2: For each element aij , if aij = factor, then set k = 1 and go to Step 3. 
If there is no element aij ( j = 1, …, m+n) such that aij = factor, then go 
back to Step 1; 
Step 3: If ajk ≠ 0 and ajk ≠ 1, calculate factor*ajk ; 
Step 4: If factor*ajk > aik, then replace aik with factor*ajk, change k = k+1 
and go back to Step 3. Otherwise, change k = k+1 and go back to Step 3; 
Step 5: Change factor = factor*F and go to Step 2 until there are no 
changes to all element values aij ; 
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Step 6: Go back to Step 1 until all the pages in S have been considered.

After element values of matrix A are updated by the above algorithm, the
distance from page i to page j is

]log[log),( / Fajisl ij= .

Fig. 5.2. Example of computing distance between pages

The example in Fig. 5.2 gives an intuitive execution demonstration of the
above algorithm. In this example, five pages (numbered 1 to 5) and their link-
ages are represented as a directed graph. Their primary correlation matrix A is
also shown in the figure. The dashed arrows in matrix A show the first level
operation sequence (factor = F) of the above algorithm for page 1. Theproce-
dure of other level operations for other pages is similar except for changing
the values of variable factor according to the above algorithm. The final up-
dated primary correlation matrix and the corresponding distance matrix D are
presented in the figure. It is clear from these results that although there are
several paths from page 1 to page 4, the distance from page 1 to page 4 is 2,
which is consistent with the real situation. The situation is the same for page3
and page 5 in this example.

This distance computation algorithm could be adapted for computing the
correlation degrees (5.2). The above algorithm also provides a numerical
method to find the shortest path between any two nodes in a directed graph. If
page correlation weights are not considered in computing the correlation de-
grees cij, the above algorithm could be directly used to produce correlation
matrix C.



92      5 Affinity and Co-Citation Analysis Approaches 

5.1.4 Page Similarity  

In this work, we focus on clustering Web-searched pages in the root set R
with a new page similarity measurement. The new page similarity is meas-
ured by the page correlation degrees within the concerned page source. For 
simplicity and better understanding of this new similarity, we divide the cor-
relation matrix C into four blocks (sub-matrices) as follows:  

The elements in sub-matrix 1 represent the correlation relationships be-
tween the pages in R. Similarly, the elements in sub-matrices 2 and 3 repre-
sent the correlation relationships between the pages in R and V, and sub-
matrix 4 gives the correlation relationships between the pages in V. It can be 
seen that the correlation degrees related with the pages in R are located in 
three sub-matrices 1, 2 and 3. Therefore, the similarity measurement for the 
pages in R only refers to the elements in these three sub-matrices.  

Note: If the similarity between any two pages in the whole source space S
is to be measured, the whole correlation matrix C will be used and the simi-
larity definition is the same as follows.  

In the correlation matrix C, the row vector that corresponds to each page i
in R is in the form of 

micccrow nmiiii ,...,2,1     ),,...,,( ,2,1, ==
+

. 

From the construction of matrix C, it is known that rowi represents out-link
relationship of page i in R with all the pages in S, and element values in this 
row vector indicate the correlation degrees of this page to the linked pages.  
Similarly, the column vector that is in the form of  
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+

, 

represents in-link relationship of page i in R with all the pages in S, and its 
element values indicate the correlation degrees from the pages in S to page i.  

Each page i in R, therefore, is represented as two correlation vectors: rowi

and coli. For any two pages i and j in R, their out-link similarity is defined as 
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Similarly, their in-link similarity is defined as
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Then the similarity between any two pages i and j in R is defined as
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whereαij and βij are the weights for out-link and in-link similarities respec-
tively.

The similarity weights αij and βij are determined dynamically as:
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where MODij = || rowi || + || rowj || + || coli || + || colj ||. As a special case, for
any pair of pages i and j in R, if their out-link modes ||row|| and in-link modes
||col|| are approximately the same, the weights αij and βij could be simply cho-
sen as (αij , βij ) = (1/2, 1/2).

It is argued that hyperlink transitivity would bring noise factors into the
page similarity measurement. One source of the noise factors is the noise
pages that are not query topic related but are densely linked with each other in
the page source. The noise pages will have unreasonably high page weights
and mislead the page correlation degrees. These noise pages, however, can be
eliminated from the page source by many existing algorithms, such as (Bharat
and Henzinger 1998; Hou and Zhang 2002; Hou et al. 2002). Therefore, in
this work, we can reasonably assume that the pages in the page source are
query topic related. Another noise factor source is taking every path between
two pages into consideration in the page correlation degree measurement.
Under this situation, minor page correlations between two pages could be ac-
cumulated such that the final correlation degrees are unreasonably increased
in some cases. In this work, however, the page correlation degree only takes
the shortest path between two pages into account, so the noise factors are
omitted. On the other hand, the page correlation degree decreases quickly
with the increase of the shortest path length (distance). Therefore, the contri-
bution of hyperlink transitivity to the page correlation degree is minor if there
exists a long distance between two pages. This would also eliminate many
noise factors in the page similarity measurement.

The above page similarity measurement is derived from the page correla-
tion degrees, rather than the direct hyperlinks between the pages. It seems that
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this idea comes from the co-citation analysis. The intension of this new simi-
larity, however, is different from that of co-citation analysis based similari-
ties. In the co-citation analysis, the influence of each page to the similarity 
measurement is the same, and the similarity between any two pages only de-
pends on the number of direct common pages (common parent and child 
pages). In this new similarity measurement (5.3), the influence of each page 
to the similarity is different, which is reflected by the page weight. Further-
more, this new similarity not only depends on the number of direct common 
pages, but also depends on the number of indirect common pages and the cor-
relation degrees of the involved pages. Fig. 5.3 gives an example that shows 
these intrinsic differences. 

In this example, the values for the weights αij and βij are simply chosen as 
(αij, βij ) = (1/2, 1/2). The number in a pair of parentheses beside a page num-
ber is the weight of that page, and the number beside a link arrow indicates 
the correlation degree between the two pages if the correlation factor F = 1/2. 
For the situation (a) in this example, if the co-citation analysis is applied, the 
similarity of pages 1 and 2 is the same as that of pages 2 and 3. But, if the 
similarity measurement (5.3) is applied to this situation, we get sim(1,2) = 
0.09 and sim(2,3) = 0.17. The similarity sim(2,3) is greater than sim(1,2) be-
cause the common page 5 of pages 2 and 3 are more important than common 
page 4 of pages 1 and 2. The simple co-citation analysis, however, is unable 
to reflect this difference. 

Fig. 5.3. Example of the similarity measurement 

For the situation (b), the similarity between pages 4 and 5 is zero if the co-
citation analysis is applied, because they have no direct common (parent) 
pages. Actually, there still exists a relative weak relationship between them 
via page 1, and their similarity should not be zero. By applying (5.3) to this 
situation, we get sim(4,5) = 0.02, which reflects the influence of the indirect 
common pages to the page similarity measurement. If pages 2 and 3 have 
higher page weights, sim(4,5) would be higher. 
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5.2 Hierarchical Web Page Clustering

With the page similarity measurement and the correlation matrix C, a hierar-
chical Web page clustering algorithm could be established. This hierarchical
clustering algorithm consists of two phases. The first one is single layer clus-
tering, in which the pages in R are clustered at the same level without hierar-
chy. The second phrase is hierarchical clustering, in which the pages in the
clusters produced by the first phase are clustered further to form a cluster hi-
erarchical structure. Fig. 5.4 gives this hierarchical clustering diagram.

Fig. 5.4. Hierarchical clustering diagram

The details of the hierarchical clustering algorithm are described as fol-
lows.

Phase 1: Single Layer Clustering
[Input]: A set of Web pages R = {p1, p2, …, pm}, clustering threshold T.
[Output]: A set of clusters CL = {CLi}.
[Algorithm]: BaseCluster(R, T)
Step 1. Select the first page p1 as the initial cluster CL1 and the centroid of
this cluster, i.e. CL1 = {p1} and CE1 = p1.
Step 2: For each page pi ∈ R, calculate the similarity between pi and the
centroid of each existing cluster sim(pi, CEj).
Step 3: If sim(pi, CEk) = )),((max ji

j
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where |CLk| is the number of pages in CLk. Otherwise, pi itself initiates a
new cluster and is the centroid of this new cluster.
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Step 4: If there are still pages to be clustered (i.e. pages that have not been 
clustered or a page that itself is a cluster), go back to Step 2 until all cluster 
centroids no longer change. 
Step 5: Return clusters CL = {CLi}. 

The above phase 1 of the clustering algorithm produces a set of single layer 
clusters called base clusters. Recursively applying the above algorithm, with 
increasing clustering threshold T, to each base cluster would produce down-
ward hierarchical clusters. This procedure is stopped when the number of 
pages in each leaf cluster is below a certain predefined threshold NP. Then 
the whole hierarchical cluster structure is produced. The procedure is de-
scribed as phase 2 of the clustering algorithm. 

Phase 2: Hierarchical Clustering 
[Input]: A set of base clusters CL = {CLi}, parameter NP and clustering 
threshold T in phase 1. 
[Output]: Hierarchical clusters HCL = {HCLi}. 
[Algorithm]: HierarchyCluster(CL, NP, T) 
Step 1: Set HCL = CL, and let CL to be the set of clusters at layer 1 (base 
layer), i.e. CL1 = {CLi

1} = {CLi}. Assign l = 1 and T ′ = T. 
Step 2: Recursively increase T ′ , l and call algorithm BaseCluster(CLi

l, 
T ′ ) for those clusters CLi

l in CLl that contain more than NP pages. Add the 
clusters at each layer to HCL. 
Step 3: Return the produced set of hierarchical clusters HCL. 

The clustering threshold T in the algorithm is determined by practical re-
quirement. It should guarantee that the pages are clustered into a reasonable 
number of clusters. For example, T could be chosen as the average page simi-
larity of all the pages in R. The increase rate for the hierarchical clustering 
threshold T ′  could be chosen as a certain percentage of the threshold T.

The parameter NP (e.g. 10) is used to control the number of downward lev-
els of the hierarchical cluster structure. If the number of pages in a cluster ≤
NP, this cluster should not be divided into some smaller clusters (at a lower 
level) any more. If the hierarchical cluster structure is for Web page naviga-
tion, the value of NP is usually determined by the number of pages in a clus-
ter that users can tolerate for navigation. Proper NP value would also be able 
to reduce the execution cost of the algorithm. 

It can be inferred from the phase 1 of the algorithm that a page in R only 
belongs to a cluster. In practice, a page might belong to multiple clusters. This 
requirement can be easily met by only changing the clustering condition in 
the step 3 of the phase 1, i.e. changing the condition “ If sim(pi, CEk) = 
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)),((max ji
j

CEpsim > T ” to “ If sim(pi, CEk) > T ”. For computation simplicity,

we still assume that a page only belongs to a cluster.
As stated in (Wen et al. 2001), for this kind of hierarchical clustering algo-

rithm, it has been proven (Wang 1997) that the algorithm is independent of
the order in which the pages are presented to the algorithm if the pages are
properly normalized. Since the page normalization is guaranteed in the simi-
larity measurement (3), the above hierarchical clustering algorithm is inde-
pendent of the page order. It is not difficult to prove that the complexity of
this algorithm is O (M*N*logN), where M is the number of generated clusters
and N is the number of pages to be clustered.

5.3 Matrix-Based Clustering Algorithms

In this work, we still focus on the page source constructed in Sect. 5.1.1, and
adopt the concepts and symbols in that section. For the concerned pagesource
S, we suppose the size of the root set R is m, the size of the vicinity set V =
BV ∪ FV is n. With the new page similarity measurement (3), a new m×m
symmetric matrix SM, called similarity matrix for R, can be constructed as
SM = (smi,j)m×m for all the pages in the root set R, where
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The matrix-based Web page clustering is implemented by partitioning the
page similarity matrix. With the partition of the similarity matrix, the pages
are accordingly clustered into clusters. To guarantee the effectiveness of ma-
trix-based algorithms in page clustering, it is needed to conduct similarity ma-
trix permutation before partition.

5.3.1 Similarity Matrix Permutation

The similarity matrix permutation is to put those closely related pages to-
gether in the similarity matrix SM, such that the page position in the matrix
more reasonably reflects the relevance between pages within the whole range
of concerned pages. For measuring how close two pages are related, we de-
fine the affinity of two pages i and j∈ R as:
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The corresponding affinity matrix is denoted as AF. Two pages with higher 
affinity would be more related with each other and should have more of a 
chance to be put in the same cluster. However, since the pages in the matrix 
have mutual effects, the final page positions of the similarity matrix should be 
determined within the whole range of concerned pages in the matrix. For 
globally optimising the page position, we define the global affinity of matrix 
SM as 
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where AF(i,0) = AF(i, m+1) = 0. GA(SM) contains all the affinities of pages 
in R with their neighbouring pages. The higher the GA(SM), the more likely 
the closely related pages are put together as neighbouring pages. The purpose 
of the similarity matrix permutation is to get the highest GA(SM), under 
which the close related pages are located closely to each other in the matrix. 

The highest GA(SM) can be obtained by swapping the positions of every 
pair of columns (accordingly rows) in matrix AF. In fact, we denote the per-
muted affinity matrix as PA. Similar to the work in (Özsu and Valduriez 
1991), the algorithm for generating PA with the highest GA(SM) consists of 
three steps: 

1. Initiation. Place and fix one of the columns of AF arbitrarily into PA. 
2. Iteration. Pick each of the remaining m-i columns (where i is the number 

of columns already placed in PA) and try to place them in the remaining 
i+1 positions in the PA. Choose the placement that makes the greatest 
contribution to the global affinity. Continue this step until no more col-
umns remain to be placed. 

3. Row ordering. Once the column ordering is determined, the placement of 
the rows should also be changed so that their relative positions match the 
relative positions of the columns. 

When the highest GA(SM) is achieved, the page positions in SM are per-
muted according to the actual page positions in the permuted affinity matrix 
PA. As a result, the closely related pages are located closely to each other in 
the new permuted similarity matrix. For simplicity, hereafter, we still denote 
this permuted similarity matrix as SM.  

Fig. 5.5 gives an example of the similarity matrix permutation. There are 
nine pages (marked P1, P2, … , P9) in this example. The original and per-
muted similarity matrices are shown in Fig. 5.5(a) and (b) separately. It can 
be seen that the closely related pages are located closely to each other in the 
permuted similarity matrix (b) with the highest global affinity. 
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5.3.2 Clustering Algorithm from a Matrix Partition

Matrix-based page clustering is implemented by decomposing the permuted
matrix SM into four sub-matrices along its main diagonal, i.e.

.

Since the rows (or columns) of the permuted similarity matrix SM corre-
spond to the pages to be clustered, the pages corresponding to the sub-
matrices SM1,1 and SM2,2 form two clusters, while the elements of sub-matrix
SM1,2 (or SM2,1, since SMT

2,1 = SM1,2 ) represent similarities between thepages
that separately belong to these two clusters.

It is clear that the partition of matrix SM is equivalent to finding a dividing
point D along the main diagonal of SM. To find this dividing point D, we de-
fine a measurement for the sub-matrix SMp,q (1≤ p, q ≤ 2) as

∑ ∑
−−+

+−=

−−+

+−=

=

)1(*)(
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1*)1( ,. )(
pdmd

dpi
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dqj jiqp smSMM , 1≤ p, q ≤ 2,

where d stands for the row (and column) number of D. The dividing point
D is selected such that the following function is maximized

.FD = M(SM1,1)* M(SM2,2) – M(SM1,2)* M(SM2,1) (5.5)

Therefore, the determination of the dividing point D makes the pages with
high affinity to be located in the same cluster (sub-matrix), and the similarity
between the clusters to be low. Once the dividing point D is determined, two
clusters SM1,1 and SM2,2 are settled down. For instance, the pages in the ex-
ample of Fig. 5.5 are clustered into two clusters: SM1,1 = {P1, P5, P7, P2},
SM2,2 = {P4, P9, P3, P8, P6}, while the row (an column) number of D is 4.

This matrix partition could be recursively applied to the matrices SM1,1 and
SM2,2 until the number of pages in every new produced cluster is less than or
equal to a preferred number pn (e.g. 20). All clusters produced during this
procedure hierarchically cluster the Web pages. Fig. 5.6 shows this clustering
diagram. The clustering procedure is depicted as the following Algorithm1,
Clustering1, where | SM | stands for the number of rows (columns) of the
square matrix SM.

m×m

SM = (smi,j)m×m =
SM1,1 SM1,2

SM2,1 SM2,2

D
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Fig. 5.5. (a) A similarity matrix.  (b) The permuted matrix of (a) 

 [Algorithm1] Clustering1 (SM, pn)  
[Input] SM: similarity matrix;  pn:  preferred page number in each cluster; 
[Output] CL = {CLi}: a set of hierarchical clusters; 
Begin 
        Set CL = ∅; Permute SM such that (5.4) is maximized; 
        Decompose SM such that (5.5) is maximized; 
        If | SM1,1 | ≤ pn, then do 
               converting SM1,1  into the next CLi;     CL = CL ∪ {CLi }; 
        else do 

converting SM1,1  into the next CLi;    CL = CL ∪ { CLi }; 
        Clustering1 (SM1,1, pn); 
        If | SM2,2 | ≤ pn, then do 
              converting SM2,2  into the next CLi;    CL = CL ∪ {CLi }; 
        else do 
              converting SM2,2  into the next CLi;    CL = CL ∪ { CLi };

Clustering1 (SM2,2, pn); 
    Return CL; 
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End

Fig. 5.6. Matrix-based hierarchical clustering diagram

5.3.3 Cluster-Overlapping Algorithm

For the above algorithm Clustering1, there exists no overlapping among the
clusters that are produced at the same level. Each page belongs to only one of
the clusters at the same level. In practice, however, it is reasonable that a page
might belong to several same level clusters. On the other hand, the non-zero
element values in SM1,2 or SM2,1 represent the similarity between two pages,
named cross-related pages, that belong to two different clusters. If a cross-
related page in one cluster has a higher similarity with another cluster, it is
possible for this page to be added to another cluster (sub-matrix) to form a
new cluster in case it will be missed out. For these reasons, the hierarchical
clustering algorithm Clustering 1 could be improved such that the cluster
overlapping among the same level clusters is permitted.

To determine whether a cross-related page in one cluster could be added to
another cluster, we define a centroid of the cluster SMp,p (1≤ p ≤ 2) as
CE(SMp,p) = {CE row(SMp,p), CE col(SMp,p)}, which consists of two vectors
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(row and column vectors) that are constructed from the correlation matrix C
as 
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(5.6)

The centroid of a cluster is a logical page representing this cluster. For a 
pair of cross-related pages p∈ SM1,1 and q∈ SM2,2, if sim(p, CE(SM2,2 )) ≥ t, 
then page p could be added to SM2,2 to form a new cluster (sub-matrix) SM'2,2

with the dimension being increased by 1, where t is a threshold defined as the 
average non-zero similarities in SM1,2. The page q could be treated in the simi-
lar way. The following Algorithm2 Extending depicts this cross-related page 
treatment.   

[Algorithm2] Extending (SM) 
[Input] SM: similarity matrix with sub-matrices SM1,1, SM2,2, SM1,2 and SM2,1 

; 
[Output] SM'1,1 , SM'2,2 : new sub-matrices (clusters) with some added cross-
related pages; 
Begin 

Compute the centroids CE(SM1,1) and CE(SM2,2 ) according to (5.6); 
Compute the threshold t, which is the average non-zero similarities in 
SM1,2;  
Set N1=[|SM1,1|*0.15]; N2 = [|SM2,2| * 0.15]; N = min(N1, N2); 
Construct page set P={p|at least one smp, j≠0, 1≤p≤d, d+1≤j≤m}; 
Construct page set Q={q|at least one smi,q≠0, 1≤i≤d, d+1≤q≤m}; 
Compute P_SM22 = {sim(p, CE(SM2,2)|p∈ P, sim(p, CE(SM2,2 ) ≥ t}; 
Compute Q_SM11 = {sim(q, CE(SM1,1)|q∈Q, sim(q, CE(SM1,1) ≥ t}; 
Add up to N pages in SM2,2 that correspond to the N highest values in 
Q_SM11 into SM1,1 to form a new sub-matrix SM'1,1; 
Add up to N pages in SM1,1 that correspond to the N highest values in 
P_SM22 into SM2,2 to form a new sub-matrix SM'2,2; 
Return SM'1,1 and SM'2,2; 

End 

The parameter d is the row (or column) number of the dividing point D in 
SM. The parameter N in this algorithm is used to restrict the number of pages 
to be added to SM1,1 and SM2,2, which guarantees the recursive execution of 
the matrix partition. This parameter, on the other hand, also guarantees that 
the added cross-related pages could not change (or dominate) the main prop-
erty of the original clusters, i.e. the most number of cross-related pages added 
to a cluster is less than or equal to 15% of the original page number in this 
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cluster. This percentage could be adjusted according to the practical require-
ments.

When n pages that belong to cluster SM2,2 are added into cluster SM1,1, the
corresponding new sub-matrix SM'1,1 is formed by adding n columns of SM1,2

and n rows of SM2,1 into the original SM1,1 with the dimension being increased
by n. These added columns and rows correspond to these n added pages. The
main diagonal elements of the newly produced n×n lower-right sub-matrix of
SM'1,1 are set to 1, and other elements in this sub-matrix are set to 0. The con-
struction of SM'1,1 is intuitively shown in Fig. 5.7 For the construction of
SM'2,2, the procedure is the same.

Based on the above cluster overlapping treatment algorithm Extending, the
matrix-based hierarchical clustering algorithm with cluster overlapping is de-
picted as the following Algorithm3 Clustering2.

[Algorithm3] Clustering2 (SM, pn)
[Input] SM: similarity matrix; pn: preferred page number in each cluster;
[Output] CL = {CLi}: a set of hierarchical clusters;
Begin

Set CL = ∅; Permute SM such that (5.4) is maximized;
Decompose SM such that (5.5) is maximized;
{SM'1,1 , SM'2,2 } = Extending (SM);
If | SM'1,1 | ≤ pn, then do

converting SM'1,1 into the next CLi; CL = CL ∪ {CLi};
else do

converting SM'1,1 into the next CLi; CL=CL∪{CL};
Clustering2 (SM'1,1, pn);

If | SM'2,2 | ≤ pn, then do
converting SM'2,2 into the next CLi; CL = CL∪{CLi};

else do converting SM'2,2 into the next CLi; CL=CL∪{CLi};
Clustering2 (SM'2,2, pn);

Return CL;
End

This clustering algorithm enables some pages in R to be clustered into sev-
eral same level clusters, which is reasonable in practice and enables users to
find some pages from different paths in the hierarchical cluster structure. It is
not difficult to prove that the complexity of the above clustering algorithms is
O(m2), where m is the number of pages to be clustered.
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Fig. 5.7. Construction of new sub-matrix SM'1,1

5.4 Co-Citation Algorithms 

The citation and co-citation analysis were originally developed for scientific 
literature index and clustering, and then extended to the Web page analysis. 
For better understanding of the algorithms to be proposed, we firstly present 
some background knowledge of the citation and co-citation analysis, and then 
give the Extended Co-Citation algorithm for relevant page finding. 

5.4.1 Citation and Co-Citation Analysis 

The citation analysis was developed in information science as a tool to 
identify core sets of articles, authors, or journals of particular fields of study 
(Larson 1996). The research has long been concerned with the use of citations 
to produce quantitative estimates of the importance and impact of individual 
scientific articles, journals or authors. The most well-known measure in this 
field is Garfield's impact factor (Garfield 1972), which is the average number 
of citations received by papers (or journals) and was used as a numerical 
assessment of journals in Journal Citation Reports of the Institution for 
Scientific Information. 

The co-citation analysis has been used to measure the similarity of papers, 
journals or authors for clustering. For a pair of documents p and q, if they are 
both cited by a common document, documents p and q is said to be co-cited. 
The number of documents that cite both p and q are referred to as co-citation 
degree of documents p and q. The similarity between two documents is 
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measured by their co-citation degree. This type of analysis has been shown to
be effective in a broad range of disciplines, ranging from author co-citation
analysis of scientific subfields to journal co-citation analysis. For example,
Chen and Carr (Chen and Carr 1999) used author co-citation analysis to
cluster the authors, as well as the the research fields. In the context of the
Web, the hyperlinks are regarded as citations beween the pages. If a Web
page p has a hyperlink to another page q, page q is said to be cited by the
page p. In this sense, citation and co-citation analyses are smoothly extended
to the Web page hyperlink analysis. For instance, Larson (Larson 1996),
Pitkow and Pirolli (Pitkow and Pirolli 1997) have used the co-citation to
meaure the Web page similarities.

The above co-citation analyses, whether for scientific literatures or for
Web pages, is mainly for the purpose of clustering, and the page source to
which the co-citation analysis is applied is usually a pre-known page set or a
Web site. For example, the page source in (Pitkow and Pirolli 1997) was the
pages in a Web site of Georgia Institute of Technology, and the page source
in (Larson 1996) was a set of pages in Earth Science related Web sites. When
the co-citation analysis is applied for relevant page finding, however, the
situation is different. Since there exists no pre-known page source for the
given page and co-citation analysis, the success of co-citation analysis mainly
depends on how to effectively construct a page source with respect to the
given page. Meanwhile, the constructed page source should be rich in related
pages with a reasonable size.

Fig. 5.8. Page source S for the u in DH Algorithm

Dean and Henzinger (Dean and Henzinger 1999) proposed a co-citation al-
gorithm to find the relevant pages. Hereafter, we denote it as the DH Algo-
rithm. In their work, for a given page (URL) u, the page source S with respect
to u is constructed in the following way: the algorithm firstly chooses up to B
(e.g. 2000) arbitrary parents of u; for each of these parents p, it adds to S up to
BF (e.g. eight) children of p that surround the link from p to u. The elements
of S are siblings of u as indicated in Fig. 5.8. Based on this page source S, the
co-citation algorithm for finding relevant pages is as follow: for each page s
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in S, the co-citation degree of s and u is determined; the algorithm finally re-
turns the 10 pages that have the highest co-citation degrees with u as the rele-
vant pages.  

Although the DH Algorithm is simple and the page source is of a reason-
able size (controlled by the parameters B and BF), the page source construc-
tion only refers to the parents of the given page u. It is actually based on an 
assumption that the possible related pages fall into the set of siblings of u. 
Since the child pages of u, and accordingly the page set derived from these 
child pages, are not taken into account in the page source construction, many 
semantically related pages might be excluded in the page source and the final 
results may be unsatisfactory. This is because the semantic relationship con-
veyed by the hyperlinks between two pages is mutual. If a page p is said to be 
semantically relevant (via hyperlinks) to another page q, page q could also be 
said to be semantically relevant to page p. From this point of view, the chil-
dren of the given page u should be taken into consideration in the page source 
construction.  

5.4.2 Extended Co-Citation Algorithms 

For a given page u, its semantic details are most likely to be given by its in-
view and out-view (Mukherjea and Hara 1997). The in-view is a set of parent 
pages of u, and out-view is a set of child pages of u. In other words, the rele-
vant pages with respect to the given page are most likely to be brought into 
the page source by the in-view and out-view of the given page. The page 
source for finding relevant pages, therefore, should be derived from the in-
view and out-view of the given page, so that the page source is rich in the re-
lated pages.  

Given a Web page u, its parent and child pages could be easily obtained. 
Indeed, the child pages of u can be obtained directly by accessing the page u; 
for the parent pages of u, one way to obtain them is to issue an AltaVista
query of the form link: u, which returns a list of pages that point to u (Bharat 
and Henzinger 1998). The parent and child pages of the given page could also 
be provided by some professional servers, such as the Connectivity Server 
(Bharat et al. 1998). After the parent and child pages of u are obtained, it is 
possible to construct a new page source for u that is rich in related pages. The 
new page source is constructed as a directed graph with edges indicating hy-
perlinks and nodes representing the following pages: 

1. Page u, 
2. Up to B parent pages of u, and up to BF child pages of each parent page 

that are different from u, 
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3. Up to F child pages of u, and up to FB parent pages of each child page that
are different from u.
The parameters B, F, BF and FB are used to keep the page source to a rea-

sonable size. In practice, we choose B = FB = 200, F = BF = 40. This new
page source structure is presented intuitively in Fig. 5.9. Before giving the
Extended Co-Citation algorithm for finding relevant pages, we firstly define
the following concepts.

Definition 1: Two pages p1 and p2 are back co-cited if they havea common
parent page. The number of their common parents is their back co-citation
degree denoted as b(p1, p2). Two pages p1 and p2 are forward co-cited if they
have a common child page. The number of their common children is their
forward co-citation degree denoted as f (p1, p2).

Definition 2: The pages are intrinsic pages if they have same page domain
name.

Definition 3: (Dean and Henzinger 1999): Two pages are near-duplicate
pages if (a) they each have more than 10 links and (b) they have at least 95%
of their links in common.

Based on the above concepts, the complete Extended Co-Citation algo-
rithm to find relevant pages of the given Web page u is as follow:

Step 1: Choose up to B arbitrary parents of u.
Step 2: For each of these parents p, choose up to BF children (different

from u) of p that surround the link from p to u. Merge the intrinsic
or near-duplicate parent pages, if they exit, as one whose links are
the union of the links from the merged intrinsic or near-duplicate
parent pages, i.e. let Pu be a set of parent pages of u,

Pu = {pi | pi is a parent page of u without intrinsic and near-duplicate
pages, i∈[1, B]},

let Si = {si,k | si,k is a child page of page pi , si,k ≠ u, pi∈Pu , k∈[1, BF]}, i ∈
[1, B].

Then Step 1 and 2 produce the following set

U
B

i
iSBS

1=

= .

Step 3: Choose first F children of u.
Step 4: For each of these children c, choose up to FB parents (different

from u) of c with highest in-degree. Merge the intrinsic or near-
duplicate child pages, if they exist, as one whose links are the un-
ion of the links to the merged intrinsic or near-duplicate child
pages, i.e. let Cu be a set of child pages of u,
Cu = {ci | ci is a child page of u without intrinsic and near-
duplicate pages, i∈[1, F]},
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let Ai = {ai.k | ai,k is a parent page of page ci, ai,k and u are neither 
intrinsic nor near-duplicate pages, ci∈Cu, k∈[1,FB]}, i ∈ [1, F]. 

Then Step 3 and 4 produce the following set 

U
F

i
iAFS

1=

= . 

Step 5: For a given selection threshold δ, select pages from BS and FS
such that their back co-citation degrees or forward co-citation de-
grees with u are greater than or equal to δ. These selected pages 
are relevant pages of u, i.e., the relevant page set RP of u is con-
structed as: 

RP = { pi | pi ∈ BS with δ≥),( upb i  OR  pi ∈ FS with δ≥),( upf i }. 

Fig. 5.9. Page source structure for the Extended Co-Citation algorithm 

It can be seen from this algorithm that, in the parent page set Pu and child 
page set Cu of u, the intrinsic or near-duplicate pages are merged as one. This 
treatment is necessary for the success of the algorithm. Firstly, this treatment 
can prevent the searches from being affected by malicious hyperlinks. In fact, 
for the pages in a Web site (or server) that are hyperlinked purposely to mali-
ciously improve the page importance for Web search, if they are imported 
into the page source as the parent pages of the given page u, their children 
(the siblings of u) most likely come from the same site (or server), and the 
back co-citation degrees of these children with u would be unreasonably in-
creased. With the merger of the intrinsic parent pages, the influence of the 
pages from the same site (or server) is reduced to a reasonable level (i.e. the 
back co-citation degree of each child page with u is only 1) and the malicious 
hyperlinks are shielded off. For example, in Fig. 5.10, suppose the parent 
pages P1, P2, P3 and their children S1.1, …, S3.2 be intrinsic pages. In situation 
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(a), the back co-citation degree of page S2.2 with u is unreasonably increased
to 3, which is the ideal situation the malicious hyperlink creators would like.
The situation is the same for the pages S1.2and S3.1. With the above algorithm,
the situation (a) is treated as the situation (b) where P is a logic page repre-
senting the union of P1, P2, P3, and the contribution of each child page from
the same site (or server) to the back co-citation degree with u is only 1, no
matter how tightly these intrinsic pages are linked together.

Secondly, for those pages that are really relevant to the target page u and
located in the same domain name, such as those in Web sites that are con-
cerned about certain topics, the above intrinsic page treatment would proba-
bly decrease their relevance to the given page u. However, since we consider
the page relevance to the given page within a local Web community (page
source), not just within a specific Web site or server, this intrinsic page treat-
ment is still reasonable in this sense. Under this circumstance, there exists a
trade-off between avoiding malicious hyperlinks and keeping as much useful
information as possible. Actually, if such pages are still considered as rele-
vant pages within the local Web community, they would be finally identified
by the algorithm. The above reasons for intrinsic parent page treatment are
the same for the intrinsic child page treatment, as well as the near-duplicate
page treatment.

Fig. 5.10. An example of intrinsic page treatment

It is also worth noting that even if the given page u contains active links
(i.e. links to hub pages that are also cited by other pages), the algorithm, espe-
cially the pages set Ai, can also shield off the influence of malicious hyper-
links from the same site or server or mirror site of u. On the other hand, how-
ever, this page set Ai would probably filter those possible relevant pages that
come from the same domain name of u. The trade-off between avoiding mali-
cious hyperlinks and keeping useful information still exists in this circum-
stance. If the algorithm is only used within a specific Web site or domain
name, it can be simplified without considering the intrinsic page treatment. In
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other words, in the Extended Co-Citation algorithm, the influence of each 
Web site (or server) to the page relevance measurement is reduced to a rea-
sonable level, and a page's relevance to the given page is determined within a 
local Web community (page source), rather than only within a specific Web 
site or server. 



6 Building a Web Community

In this Chapter, we mainly discuss algorithms that construct Web communi-
ties. We introduce Web communities as complete directed bipartite graphs in
Sect. 6.1. In Sect. 6.2, we briefly introduce the notion of small world which
indicates that such subgraphs do exist on Web. Algorithms for finding such
complete directed bipartite graphs will be discussed in Sect. 6.3. Sect. 6.4 dis-
cusses finding Web communities as dense directed bipartite graphs which is
an approach to relax the conditions imposed on the complete directed bipar-
tite graphs. Sect. 6.5 introduces two approaches to find Web communities in
arbitrary shapes. In Sect. 6.6 and 6.7, we discuss the algorithms on finding
connections among Web communities and exploring the Web community
evolution patterns. In Sect. 6.8, a graph-theoretical approach is introduced,
which tries to answer the question when a found Web community can be de-
termined as unique.

6.1 Web Community

Web community is a community on the Web, and is a collection of Web
pages created by those who share the same interests or specific topics. In
(Gibson et al. 1998), Gibson et al.. presented a view on Web communities
that can be found using the HITS algorithm. In the abstract of their paper
(Gibson et al. 1998), it states: The communities can be viewed as containing a
core of central, “authoritative” pages linked together by “hub pages”; and
they exhibit a natural type of hierarchical topic generalization that can be in-
ferred directly from the pattern of linkage. In (Kumar et al. 1999), Kumar et
al.. also give two different kinds of Web communities: explicitly-defined and
implicitly-defined communities. Explicitly-defined Web communities are
widely-known communities and can be found in Yahoo or AOL Web sites,
with newsgroups, mailing-list, and a long list of resources linking to all re-
lated Web sites. Implicitly-defined communities may have rather too-specific
interest or may be too detail that is typically difficult for Web portals to iden-
tify and provide enough resources for the users interested. Both kinds of Web
communities serve the same purposes: to provide linkages among groups of
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people who are possibly far away from each other; and to share their informa-
tion and knowledge. In fact, as pointed out in (Kumar et al. 1999), the number 
of implicitly-defined communities can be much larger and outnumber the ex-
plicitly-defined communities. One unique feature of implicitly-defined com-
munities is that implicitly-defined communities may appear as an emerging 
Web community for some specific topic or new event or new business part-
ners and may disappear later. Web community finding is a technique to iden-
tify such Web communities systematically.  

What does a Web community look like? In (Gibson et al. 1998), Gibson et 
al. did not define any particular types of graphs as the Web community to 
find. They explored the possibilities of discovering the Web communities us-
ing HITS with the issues in mind such as how the Web communities can be 
found (converged) with various of root sets and with different iterations. In 
(Kumar et al. 1999), Kumar et al. observed that a Web community as a graph 
may have different shapes which are difficult to be identified in general. 
However, a Web community must at least have a community core. They for-
malized it as a complete directed bipartite graph. 

Definition 6.1. A directed bipartite graph is a directed graph ( )G V E,  where 

V  is a set of nodes that is divided into two disjoint subsets, fV  and cV , and 

E  is a set of edges where each edge is from a node in fV  to a node in cV . 

Definition 6.2. A complete directed bipartite graph ( )CG V E,  is a directed 

bipartite graph, where f cV V V∪ , such as every node in fV  has an edge to 

every node in cV . A complete directed bipartite graph is denoted as 
f cCG
,

where fV f| |=  is cV c .

An example of complete directed bipartite graph, 
3 3CG
,

, is shown in Fig. 

6.1. It has a set of nodes which is divided into two disjoint sets 

1 2 3{ }fV f f f= , ,  and 1 2 3{ }cV c c c= , , . Every node if  in fV , for i , 

links to every node jc  in cV , for 1 2 3j = , , .  

Definition 6.3. A Web community (or Web community core)  is a complete di-
rected bipartite graph, ( )CG V E, . The nodes in fV  and cV , are called fans 

and centers, respectively. 
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c3c2c1

f3f2f1

Fig. 6.1. A complete directed bipartite graph

In a Web community, a center represents a Web page the Web community
in question is interested in, and a fan represents a Web page that links to the
Web pages as a center. As shown above, instead of specifying an arbitrary
Web community using a set of parameters, which are uneasy to be deter-
mined, now it specifies a Web community, as a complete directed bipartite
graph,

f cCG
,

, using only two parameters, namely, the number of fans ( f ) and

the number of centers ( c ). Consequently, Web community finding becomes a
problem of finding complete directed bipartite graphs. The hypothesis here is
that a Web community contains relatively dense bipartite subgraphs, which in
turn leads to the existence of a complete directed bipartite graph. The hy-
pothesis is strongly supported by the HITS for its excellent performance on
searching a wide range of topics on Web.

Why is Web community a completed directed complete graph at thebegin-
ning? In other words, why do fans not have edges to other fans, and why do
centers not have edges to other centers? Kumar et al. in (Kumar et al. 1999)
give the following reasons. They can be competitors in a Web community.
They do not want to have links from themselves to their competitors because
it may redirect their own customers to their competitors, even though all of
them as a whole are a part of the same community. The centers may have to-
tally opposite views on the same issue of, for example, on gun control, abor-
tion rights, death penalty, elections, etc. On the other hand, the fans may not
have links to each other, simply because they as fans can be anywhere and
may not know and do not need to know each other. The ignorance of other
parties can also be seen at the center side.

6.2 Small World Phenomenon on the Web

Before we discuss the other types of Web communities and the algorithms for
finding Web communities, we discuss one related interesting issue called
small world phenomenon. The small world phenomenon addresses that the
length of the path between any two nodes in a graph is small on average. The
implication of the existence of such rather short paths implicitly suggests that
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there are  possibly many small clusters of Web-pages and there are many pos-
sible Web communities, like complete directed bipartite graphs.  

The small world problem was first studied by Stanley Milgran et al. in the 
field of social networking to study the short chains of acquaintances between 
any two citizens, who do not know each other in United States. One well-
known experiment was conducted as follows. A citizen (source) in Nebraska 
delivered a letter to another citizen (target) in Massachusetts. The source was 
only given the basic information about the target, including the address and 
occupation to deliver the letter. Everyone, including the source on the chain, 
should try best to deliver the letter to the target, but could only pass the letter 
to the next person known on a first-name basis. Surprisingly, over many tri-
als, the average number of the length of the chains was between five and six.  

Kleinberg in (Kleinberg 2000; Kleinberg 2002) studied the algorithmic 
perspective of the small world problem, which addresses how people find 
these chains when they know little about the target. We show the model and 
the decentralized algorithm below.  

Kleinberg’s model follows the previous work done by Watts and Strogatz 
(Duncan and Watts 1998) by considering two factors, short-range (local) con-
nections and long-range connections. To model a network that exhibits the 
richness of local connections and a few random long-range connections, 
Kleinberg used a two-dimensional grid where the size of the grid is n n× , 
and the edges connecting two points on the grid are directed edges. In other 
words, a point on the grid has many connections to all its neighbor points in 
all directions, but a few connections to points in a rather long distance. Let 
( )i j,  denote a point on the grid. The distance between two points ( )i j,  and 

( )k l,  is measured as (( ) ( ))dist i j k l k i l j, , , =| − | + | − | . For local connec-

tions, a parameter ( 1)p ≥  is introduced. The parameter p  specifies the 

neighbors of a point on the grid. For example, if 1p = , then all the points 
that are within a distance 1 of a specific point are the neighbors of the specific 
point on the grid. For long-range connections, two parameters q  and r  are 
introduced. Here, the parameter q  specifies how many long-range connec-
tions a point has, and the parameter r  specifies how they are linked using in-
dependent random trials. Literally, the i-th directed edge from a point 1p  at 

position ( )x y,  to a point 2p  at position ,  is with probability propor-

tional to 1 2
rdist p p −

,  for 0r ≥ . The probability distribution is obtained 

with a normalization by dividing 1 2
rdist p p −

,  by the total sum of 

1
1 2[ ( )] r

p
dist p p −

,∑ . The decentralized algorithm follows a simple strategy: 

every message-holder chooses a contact that is as close to the target as possi-
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ble in terms of the distance measurement. The message-holder does not know
anything about how the messages have been delivered so far. Theorem 3 of
(Kleinberg 2002) is given below for reference.

Theorem 6.4. (Theorem 3 of (Kleinberg 2002)): (a) Let 0 2r≤ < . There is a
constant α , depending on p , q , r , but independent of n , so that the ex-

pected delivery time of any decentralized algorithm is at least (2 ) 3n rα − / .

(b) Let 2r > . There is constant α , depending on p , q , r , but independent

of n , so that the expected delivery time of any decentralized algorithm is at
least ( 2) ( 1)n r rα − / − .

Another Theorem in (Kleinberg 2002) states that only when 2r = , inde-
pendent of n , there is a decentralized algorithm that can produce chains
whose length is a polynomial in log n . In other words, there exists such a de-
centralized algorithm but decentralized algorithms cannot be found in other
settings. Some other works on small world and graph structures in the Web
can be found in (Duncan and Watts 1998; Adamic 1999; Broder et al. 2000;
Dill et al. 2001).

The Theorem 6.4 together with other results in (Kleinberg 2002) showed
that it is possible for people, following local information (the nearby Web
pages connected locally), to link to a remote Web page she/he is interested in.

6.3 Trawling the Web

As the first attempt, Kumar and his co-workers used actual large Web archive
to investigate whether the Web communities (complete directed bipartite
graphs) exist in (Kumar et al. 1999; Kumar et al. 1999).

Kumar and his co-workers conducted a two week experimental studies us-
ing an 18 month Web archive obtained from Alexa, which was a company
that archived the state of the Internet (Kumar et al. 1999). The archived Web
data contained over 200 million Web pages. First, Kumar et al. identified the
potential fans as specialized hubs using HITS. With human interactions, they
determined that a potential fan (Web page) has links to at least 6 different
Websites where a Website is the first field of the URL. Out of the 200 million
Web pages, 24 million pages were used as potential fans. They further
adopted an aggressive mirror-elimination strategy to remove 60% of the 24
million pages. Second, they maintained the number of potential centers as
roughly 30 times of the number of potential fans. They also adapted a pruning
strategy by in-degree to prune the centers that were highly referenced such as
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Yahoo or Altavista, based on the observation that a large number of pages 
linking to the Web portals may not necessarily have anything to do with the 
content of the pages. They pruned the Web pages as centers that had more 
than 50 in-degree. In other words, the pages referenced by more than 50 Web 
pages were pruned. Finally, they tested 

f cCG
,

, for f  is taken from {3 4 5 6}, , ,

and c  is taken from {3 5 7 9}, , , . The numbers of non-nepotistic Web commu-

nities, denoted as 
f cCG
,

| | , found in Kumar’s experimental study are listed be-

low. Here, non-nepotistic links are the links from a hub, as the fans, to other 
sites. 

3 3
38 887CG

,

| |= , , 
3 5

30 299CG
,

| |= , , 
3 7

26 800CG
,

 and 
3 9CG
,

| |= , . 

The Web communities do exist.  
Based on the results in (Kumar et al. 1999), Kumar et al. extended their ex-

perimental study and proposed a graph model in (Kumar et al. 1999). They 
considered how users create a Web page on the Internet to attract more poten-
tial visitors to visit their Web pages. A typical case they observed was that 
users added more recreational sailing pages obtained from the well-known 
Websites to attract visitors. Following the observation, adding links from a 
Web page, v , can be modeled as picking an existing Web page, u , and copy-
ing some links from the Web page, u , to the Web page v . This also helps to 
model how Web pages with a wide range of topics are created. Initially, there 
are only a few Web pages about an emerging topic. When more people show 
their interest in the new topic, the number of Web pages that reference the 
topic increases significantly. It may trigger more users to reference these Web 
pages in their own Web pages.  

A class of graph models are specified by four stochastic processes at a time 
step t, namely, a creation process for node-creation, a creation process for 
edge-creation, a deletion process for node-deletion, and a deletion process for 
edge-deletion. First, node-creation and node-deletion are with probability 

c tα  and d tα , respectively. Second, edge-creation is modeled using a 

probability β . Consider a node, v , to be randomly selected to add edges. 

With probability β , it adds k  edges from v  to other nodes independently 

and uniformly selected. With probability 1 β− , it chooses another node u
randomly, and copies k  out-going edges of u  to v . That is, an edge ( )u w,
of node u  is copied to node v  as a new edge ( ), . Third, edge deletion is 

modeled as to randomly delete an edge with a probability ( )tδ . Finally, they 
also showed that both in-degree distribution of nodes and out-degree distribu-
tion of nodes are of Zipfian distribution, when ( ) 1c tα = , d tα = , and 

( ) 0tδ =  (a node is created at all times, and no node-deletion and no edge-
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deletion occur at all times). In brief, let i tp
,

and i tq
,

be the fraction of nodes

at time t with in-degree i and out-degree i , then

1 (1 )1i tp i α/ −

,
= / (6.1)

1 (1 )1i tq i β/ −

,
= / (6.2)

Here, α and β are two probabilities for creating a new edge ( )u v, . The
following is the description of the edge creation process given in (Kumar et
al. 1999): – The “destination” v is set based on the α coin: if it comes up
heads, v is the newest page, and otherwise, v is the destination of a random
link. The “source” u is set based on the β coin: if it comes up heads, u is
the newest page, and otherwise, u is the source of a random link. When

0 52α = . and 0 58β = . , the probability of a node that has in-degree i is i-

2.1 and the probability of a node that has out-degree i is i-2.38. They remarked
that both match the reality of Web. Greco et al. also studied a stochastic ap-
proach for modeling and computing Web communities (Greco et al. 2002).

6.3.1 Finding Web Communities Based on Complete Directed
Bipartite Graphs

A Web community can be obtained from a complete directed bipartite graph,

f cCG
,

, from a Web graph G as follows, based on the HITS algorithm. Note:

the nodes of a Web community (a complete directed bipartite graph) are di-
vided into two sets, cV (centers) and fV (fans). First, the root set, R , as the

preparation step for using HITS, are obtained as follows.

{ ( ) }c f j i f i jR V V v v V v v G= ∪ ∪ | ∈ ∧ , ∈ ∪

{ ( ) ( ) }j i k c j i j kv v v V v v G v v G| , ∈ ∧ , ∈ ∧ , ∈

(6.3)

As seen above, the root set includes the nodes in
f cCG
,

and the nodes being

pointed by the nodes fV and the nodes pointing to at least two nodes in cV .

Second, using the HITSalgorithm, a set of authorities and a set of hubs can be
identified which represent the centers and the fans of the corresponding Web
community.



118      6 Building a Web Community 

6.4 From Complete Bipartite Graph to Dense Directed 
Bipartite Graph 

In Sect. 6.3.1, we showed how Kumar et al. find complete directed bipartite 
graphs as Web communities existing in Web communities. Recall: a complete 
directed bipartite graph 

f cCG
,

 have f  fans and c  centers, and every fan must 

have a directed link to every center. A natural question that arises is whether 
the condition is too strong. Can it miss any interesting Web communities? In 
order to relax the condition imposed on complete bipartite graph, Reddy and 
Kitsuregawa in (Reddy and Kitsuregawa 2001) proposed a dense directed bi-
partite graph, which we will discuss mainly in this section. It is interesting to 
know that the relaxation of bicliques is also discussed in data clustering 
(Mishra et al. 2003). 

Definition 6.5. A dense directed bipartite graph DG V E,  is a directed bi-

partite graph, where f cV V V= ∪ . A node in fV  must link to at least 

c c cVγ γ≤ ≤| |  nodes in cV , and at least (1 )f f fVγ γ≤ ≤| |  nodes in fV

link to every node in cV . A dense directed bipartite graph is denoted as 

c f
DG
γ γ,

. 

c2 c3c1

f4f3f2f1

Fig. 6.2. A dense directed bipartite graph 

An example of dense directed bipartite graph, 
2 3DG
,

, is shown in Fig. 6.2. It 

has a set of nodes which are divided into two disjoint sets, 

1 2 3 4{ }fV f f f f= , , ,  and { }cV c c c= , , . A node if  in fV  links to at least 

two nodes in cV , and there are three nodes ( 1 2 3f f f, , ) that link to every node 

jc  in cV , for 1 2 3j = , , . It is important to know that C DG G
, ,

⊆ . In this 

example, a CG
,

 can be a set of nodes 1 2 1 2 3{ }f f c c c, , , ,  and the edges con-

nected them in 
2 3DG
,

.  

A Web community is then defined as a dense directed bipartite graph in 
(Reddy and Kitsuregawa 2001). Comparing Definition 6.5 with Definition 
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6.2, the condition in Definition 6.2 is weakened, because it does not request
that every fan must link to every center. Following Definition 6.5, a complete
directed bipartite graph is a special case of a dense directed bipartite graph.
Therefore, given a dataset, the resulting set of complete directed bipartite
graphs found are contained in the resulting set of dense directed bipartite
graphs. In other words, given a dataset, W , and two parameters fγ and cγ .

Let { }
f c f cC C C f cG G G W f cγ γ
, ,

= | ⊆ ∧ ≥ ∧ ≥ and { }
f c f cD D C c fG G G W f cγ γ
, ,

= | ⊆ ∧ ≥ ∧ ≥ .

C DG G⊆ .

Definition 6.6. A Web community is a dense directed bipartite graph,
( )DG V E,

Furthermore, in (Reddy and Kitsuregawa 2001), Reddy and Kitsuregawa
defined a Web community hierarchy. It is worth noting that a Web commu-
nity is treated as a set of nodes in this Web community hierarchy. In other
words, the fans at the level 1i − become centers at the level i . Upon a spe-
cific level i , a Web community is a dense directed bipartite graph.

Definition 6.7. A Web community ijC is the j-th community at the level i ,

where ij fC V= of a
f cDG
,

at level i – 1 such as the sizes of f and c , for

f cDG
,

, are greater than or equal to the minimum required numbers of fans

( fγ ) and centers ( cγ ) respectively, and c cV β γ| |≤ ⋅ , where β is a positive

number as a parameter to control the relaxation of the Web community as
dense directed bipartite graphs.

As shown above, there are three parameters to relax the conditions imposed
on complete directed bipartite graphs, fγ , cγ and β . Both fγ and cγ relax

the condition that a Web community must be a complete directed bipartite
graph. In other words, not all centers need to be pointed to by fans and not all
fans need to point to centers. The last parameter β further enlarges the pool

of centers ( cV| | ) up to cβ γ⋅ . Note: β is a positive number.

6.4.1 The Algorithm

In following, we introduce the algorithm in (Reddy and Kitsuregawa 2001) to
extract Web communities as dense directed bipartite graphs. We call it
Comm-DBG, which is shown in Algorithm 6.1. The algorithm takes five pa-
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rameters, a large graph G  for the Web dataset, θ  for specifying a dense di-
rected bipartite graph along with fγ  and cγ , and β  for controlling the re-

laxation. Comm-DBG will return a set of Web communities on which the Web 
community hierarchy can be easily built. There are two main steps in Comm-
DBG. As shown in Algorithm 6.1, the first step (line-1) is to generate a set of 
candidates on which Web communities can be found by calling a procedure 
Gen (Algorithm 6.2). The second step is to find dense directed bipartite 
graphs as Web communities (line-2) by calling a procedure Find-DBG (Algo-
rithm 6.3). 

Algorithm 6.1 Comm-DBG(G ,θ , fγ , cγ , β ) 

Input: a directed graph G , a cocited threshold ( 0)θ > , and three positive 
numbers, fγ , cγ  and β .   
Output: a set of dense directed bipartite graphs;  
1. U ← Gen(G , θ , K ); K  is a pregiven parameter for controling the 

maximum number of iterations.  
2. E ← Find-DBG(U , G , fγ , cγ , β );  
3. return E ;   

Generating Candidate Sets 

Algorithm 6.2 illustrates how to generate a set of candidate sets for the 
Web dataset, as a large directed graph G . A for-loop statement is used to 
generate a candidate set for a node i ∈ , as shown in line 2-12. The candi-

date set for iv  is 1U , which is initialized as only to contain iv  (line 3), and 

will be inserted into the set of U  at line 12, where U  is the set of candidate 
sets to be returned at the end of the procedure (line 13). A relationship be-
tween a node and a set of nodes serves the basis to generate a candidate set. 
The relationship is called Cocited, and is defined in Definition 6.8. The 
Cocited relationship is an extension of the cocited (co-citation) defined for ci-
tation analysis and bibliometrics. Given two papers, iv  and jv . The papers, 

iv  and jv , are cocited if they cite the same papers (at least one). In other 

words, given two nodes, iv  and jv  in a graph G , the two nodes, iv  and jv

are cocited if the intersection of ( )ichild v  and ( )jchild v  is not empty, 

where ( )kchild v  is the set of child nodes of kv . Note: the cocited relation-

ship between two nodes can be used to generate candidate sets for construct-
ing complete directed bipartite graphs, but is too strong to be used to generate 
candidate sets for constructing dense directed bipartite graphs. In order to 
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generate such candidate sets for dense directed bipartite graphs, Cocited rela-
tionship is defined in Definition 6.8 in (Reddy and Kitsuregawa 2001).

Definition 6.8. Given a set of nodes, V , and a node, ( )iv V∈/ , in a directed

graph G . Let ( ) ( ) ( ( ))
ji i v V jCocited v V child v child v
∈

, = ∩ ∪ where

( )kchild v is the set of child nodes of kv . The node iv and the set V are

cocited, if | ( ) |iCocited v V θ, ≥ .

v9v8v7v6v5v4

v3v2v1

Fig. 6.3. Cocited

As can be seen above, the Cocited relationship is defined as a relationship
between a node and a set of nodes, rather than between two nodes. A node iv

is in a Cocitation relationship with a set V if iv points (cites) to some nodes

pointed (cited) by some nodes in V . A threshold, θ , is introduced in Defini-
tion 6.8. A node iv and V are in a co-citation relationship if iv points at least

θ nodes pointed by some nodes in V . Fig. 6.3 shows three nodes 1v , 2v and

3v are Cocited, when 2θ = . First, let 1{ }V v= , 2v is Cocited with V , be-

cause 2( ) 2Cocited v V| , |≥ . Second, let 1 2{ }V v v= , , 3v is Cocited with V

( 1v and 2v ), because 3( ) 2Cocited v V| , |≥ . Therefore, the three nodes, 1v ,

2v and 3v , are Cocited. Note: 1v and 3v do not have any common child

nodes.
In Algorithm 6.2, at line 8, it checks if a node jv is Cocited with a set of

nodes 1U . 1U will be enlarged K times. K is needed as shown in Fig. 6.3.

Let 1{ }V v= . Suppose it first checks whether 3v is Cocited with V ( 1v ).

Obviously, 3v is not Cocited with 1v because 3( ) 0Cocited v V| , |= , which is

less than 2θ = . With the parameter K , 3v can possibly be Cocited with 1v

after 2v is first Cocited with 1v .

Algorithm 6.2 Gen(G ,θ , K )
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Input: a directed graph ( )G V E, , a cocited threshold ( 0)θ > , and con-
troling of iteration 0K > .  
Output: a set of sets U .  
1. U ←∅ ;  
2. for each iv V∈ do
3.      1 { }iU v← ;  
4.      1k ← ;  
5.      while k K≤ do
6.           2U ←∅ ;  
7.            for each jv V∈ do
8.                 if Cocited( jv , 1U ) θ≥ then
9.                       2 2 { }jv← ∪ ;  
10.            1 1 2U U U← ∪ ;  
11.            1k k← + ;  
12.       1{ }U U U← ∪ ;  
13. return U . 

Algorithm 6.3 Find-DBG(U ,G , fγ , cγ ,β ) 
Input: a set of sets U , a graph G , and three non-negative integers fγ , cγ

and β .   
Output: a set of dense directed bipartite graphs.  
1. E ←∅ ;  
2. for each iV U∈ do
3.     cc γ← ;  
4.    ff γ← ;  
5.    iE ←∅ ;  
6. for each i iv V∈ do
7.     insert the edge of ( )i jv v,  into iE  if ( )j iv child v∈ ;  
8. again: for a goto statement below  
9. repeat  
10.     sort iE  based on the destination of edges;  
11.     delete ( )i jv v,  from iE  if ( )jparent v c< ;  
12.     sort iE  based on the source of edges;  
13.     delete ( )i jv v,  from iE  if ( )ichild v f< ;  
14. until iE  is converged  
15. { ( ) }← | , ∈ ; 
16. if c β ⋅ then
17.     1f f ;  
18.      goto again;  
19. { }iE E E← ∪ ; iE  represents a dense directed bipartite graph  
20. return E . 
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Finding Web Communities

Algorithm 6.3 illustrates how to find Web communities as dense directed
bipartite graphs. The parameter U is the set of candidate sets generated by
Gen (Algorithm 6.2). For each candidate set iV U∈ , Find-DBG attempts to

find a Web community, iE , in three steps. First, lines 6-7 createan initial iE ,

based on iV , including all edge pairs ( )i jv v, for i iv V∈ and ( )j iv child v∈ .

Second, lines 9-14 remove edges, ( )i jv v, , from iE , either if jv as a center

does not have enough fans ( | ( ) |i fparent v γ< ) or if iv as a fan does not have

enough centers to point to ( | ( ) |i cchild v γ< ). The idea behind this is to re-

move those that can not be participated in a dense directed bipartite graph.
The second step will continue until iE is converged. The removing process

can be done using two sorting methods. One is to sort based on iv as the

source, and the other is to sort based on jv as the destination of edges. The

third step, lines 15-17 are to control the relaxation using β . This step first

checks whether the number of centers is greater than cβ ⋅ (Refer to Defini-
tion 6.3). If so, it increases the number of fans allowed and goes to “again” to
repeat the second and the third steps. Find-DBGwill return a set of such iE ’s.

6.5 Maximum Flow Approaches

In the previous sections, a Web community is based on either a complete di-
rected bipartite graph or a dense directed bipartite graph. They all need to
specify the sizes of the two disjoint subsets of nodes using two parameters. A
question that arises is whether it is possible to find Web communities of arbi-
trary shapes or diameters. Maximum flow is one of the possible alternative to
identify Web communities. Flake et al. studied such an approach in (Flake et
al. 2000; Flake et al. 2002), and Imafuji and Kitsuregawa improved the qual-
ity the Flake and his co-workers work in (Imafuji and Kitsuregawa 2003;
Imafuji and Kitsuregawa 2004).
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6.5.1 Maximum Flow and Minimum Cut 

We introduce the maximum flow and minimum cut below, as the background 
of this section. The details can be found in (Cormen et al. 1990; Papadimit-
riou and Steiglitz 1998).  

Definition 6.9. Let ( )N s t V E c, , , ,  be a flow network. Here, V  is a set of 

nodes, and E  is a set of directed edges E V V⊆ ×  of a directed graph 
( )G V E, . And, s  and t  are two distinctive nodes in V , called source and 

terminal, respectively. Each edge ( )i iv v E, ∈ , is associated with a capacity 

c , denoted ( )i jc v v, . The capacity specifies the upper bound of data that can 

flow from iv  to jv  via the edge ( )i jv v, . 

Definition 6.10. Given a flow network ( )N s t V E c, , , , , a flow is a function, 

denoted as ( )i jf v v, , for every edge ( )i jv v E, ∈ , satisfying three properties:  

• 0 ( ) ( )i j i jf v v c v v≤ , ≤ , . 

• For all nodes { }v V s t , 
( ) ( )

( ) ( )
i j

i ju v E v v E
f u v f v u

, ∈ , ∈
, = ,∑ ∑ .  

The s  – t  maximum flow problem over N  is to find the maximum value 

of ( )
v V∈

,∑ .    

In Definition 6.10, the first condition states that a flow on an edge cannot 
exceed its capacity (its upper bound). The second condition states that, except 
for the source s  (with a zero in-coming flow) and the terminal t  (with a zero 
out-going flow), the in-coming flow and out-going of any node must be the 
same. Note: ( )i jc v v,  and ( )i jf v v,  be zero if ( )i jv v E, ∈/ .  

Definition 6.11. Given a flow network N s t V E c, , , , . The s  – t  minimum 

cut over N  is to find the minimum value of a cut set, s tC V V, , when divid-

ing the set of nodes V  into two disjoint sets, sV  and tV , such as ss V∈  and 

tt V∈ . The cut set is given as 

( ) {( ) ( ) }s t i j i j i s j tC V V v v v v E v V v V, = , | , ∈ ∧ ∈ ∧ ∈ , the capacity of a cut 

set is denoted as 
( ) ( )

( ) ( )
i j s t

i jv v C V V
val C c v v

, ∈ ,
,∑ , and the size of a cut set is 

the number of edges in the cut set, denoted as C| | . 

The s - t  maximum flow problem is identical to the s  – t  minimum cut 
problem over the same flow network N , as the theorem of Ford and Fulk-
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erson (Cormen et al. 1990; Papadimitriou and Steiglitz 1998). Based on the
theorem of Ford and Fulkerson, many efficient algorithms were proposed. In
(Cormen et al. 1990), Cormen et al. named all the algorithms that follow the
theorem of Ford and Fulkerson, as Ford-Fulkerson-Method. The Ford-
Fulkerson-Method initializes all flows ( )i jf v v, to be zero, and iteratively

increase the flow value along a path, called augmenting path, if more flows
can be pushed into the path. Flake, Lawrence and Giles proposed an algo-
rithm called ISA for incremental shortest augmentation, which is given in
(Flake et al. 2000), and Imafuji and Kitsuregawa used the Edmonds-Karp al-
gorithm in (Cormen et al. 1990).

6.5.2 FLG Approach

In (Flake et al. 2000; Flake et al. 2002), Flake, Lawrence and Giles consid-
ered a flow network ( )N s t V E c, , , , with one modification such as the graph

( )G V E, is a undirected graph, rather than a directed graph as originally de-
fined in the flow network. We denote the modified flow network as

( )N s t V E c, , , , below. Flake et al. defined a Web community with the flow

network in mind as follows. The graph ( )G V E, is the undirected graph in

the modified network flow N .

Definition 6.12. A Web community is a set of nodes cV V⊆ over the graph

( )G V E, such as every node v in cV has more edges connecting to the other

nodes in cV than the nodes in cV V− .

Fig. 6.4. A Web Community

An example Web community (Definition 6.12) is shown as the left side
dense subgraph in Fig. 6.4 (Fig. 1 of (Flake et al. 2000)). The three dashed
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edges form the cut between the left and right side subgraphs. In a theorem in 
(Flake et al. 2000), Flake et al. showed that a Web community cV  (a set of 

nodes) can be identified over a flow network N  by finding the s  – t  mini-
mum cut, C , of N  on the condition that ( )C # s| |<  and ( )C # t| |< , where 

C| |  is the size of a cut set over the flow network N , ( )# s  is the number of 

edges between s   and other nodes in cV , and  ( )# t  is the number of edges 

between t  and { }cV V t− − . The Web community is the set of nodes, after 

the minimum cut, that are still reachable from the source node s . The theo-
rem reemphasizes the fact that every node in a Web community has more 
connections with other nodes in the same Web community than the connec-
tions with the nodes outside of the Web community (the other size of the cut), 
because the cut is minimum to separate the community from the rest part of 
the graph. The conditions that both ( )# s  and ( )# t  are greater than the cut 
size ensure that the Web community found is meaningful.  

Following Definition 6.12, a Web community is a set of nodes of graph, 
( )G V E, , which is a part of a flow network N . The question is how to iden-

tify the source, s , and, the terminal, t . Flake et al. selected two virtual nodes 
as the source and terminal.  

The source, s , is a virtual node that connects to a set of user given seed 
nodes, S V⊂ . The virtual source s  is assigned to an infinite capacity to 
each of the seed node. The set of seed nodes together provides good opportu-
nities to identify a Web community with higher accuracy. Because the virtual 
source s  has infinite capacities to all of the seed nodes, all the seed nodes 
have high potential to be reachable from the source s  after the cut – to cut the 
Web community from the rest of the graph.  

source
graph center

cut

community

the rest of the graph

Virtual terminal

Fig. 6.5. A cut  
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The choice of the terminal t has great impacts on the Web community and
is intuitively difficult to obtain. Flake et al. gave a smart way of selecting a
virtual terminal and proved the correctness. They formalize the problem as
whether the cut set remains the same given two different terminals, the best,

t , and the heuristic t̂ . As illustrated in Fig. 6.5 (Based on Fig. 3 of (Flake et
al. 2000)), the best terminal, t , is considered as the graph center, the virtual

terminal, t̂ , is a node newly added. The virtual terminal t̂ is connected with
all nodes in V , except the seeds, s and itself, with the minimum capacity 1.
The rectangle in Fig. 6.5 shows the cut set between the Web community and
the rest of the graph.

Let us consider two flow networks over a Web graph ( )G V E, with a set

of seed nodes S V⊆ .

• 1 1 1 1( )N s t V E c= , , , , : Here, 1 { }V V s= ∪ , and 1E E E′= ∪ where

{( ) }E s v v S′ = , | ∈ . 1c includes the capacity for each edge ( )s v, in E′ ,

which are all infinite, ( )c s v, = ∞ , as well as the capacity for each edge in

E . t is the graph center and is in V .

• 2 2 2 2
ˆ( )N s t V E c= , , , , . Here, as the virtual s , t̂ is a virtual node.

2 { }V V s t= ∪ , , and 2E E E E"′= ∪ ∪ where {( ) }E s v v S′ = , | ∈ , and

{( ) }E" v t v V= , | ∈ . 2c includes the capacity for each edge, ( )s v, in E′ ,

which are all infinite, ( )c s v, = ∞ , the capacity for each edge ( )v t, in E" ,

( ) 1c v t, = , as well as the capacity for each edge in E .
Suppose that there are two cut sets, after applying s – t minimum cut,

1 1 1( )
s t

C V V, and 2 2 2( )
s t

C V V, found from 1N and 2N , respectively. Both 1s
V

and 2s
V include the source s . The questions are: can the two cut sets, 1C and

2C , possibly be the same? And what conditions can make it possible? Flake

et al. showed that it is possible in a theorem. We introduce their founding be-
low.

Theorem 6.13. (Theorem 2 of (Flake et al. 2000)) Given two flow networks,

1 1 1 1( )N s t V E c= , , , , and 2 2 2 2
ˆ( )N s t V E c= , , , , . Let 1 1 1( )

s t
C V V, and

2 2 2( )
s t

C V V, be the minimum cut sets for 1N and 2N , respectively. If the

condition 1 11 ( )
t

k V val C< <| | / holds, then 2 1C C C′= ∪ such as C′ only

includes the edges 2
ˆ( )v t E, ∈ for 2s

v V∈ .
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Flake, Lee and Giles sketched the proof as follows. First, increasing the ca-
pacity of all nodes equally by a factor of k  cannot change the minimum cut 

set. Second, if all nodes in 2t
V  are connected to the terminal t̂ , the minimum 

cut set of 1N  will be still effective in 2N , if 1 1( )
t

V k val C| |> ⋅ . Third, if all 

nodes, v , in 2s
V  are connected to t̂  with a unit capacity edge, it is more effi-

cient to cut the edge between such a v  and t̂   than to remove v  from the 
community, 2s

V . Fourth, 1 1 1 1( )
s s t

V k val C V V| | + ⋅ <| | + | |  as implied by 

1 1( )
t

k V val C<| | / . Note: for the two cuts, 1C  and 2C , 1 2s s
V V=  and 

1 2
ˆ{ }

t t
V V t= − .  

Flake, Lee and Giles proposed two algorithms, called Exact-Flow-
Community (Algorithm 6.4) and Approximate-Flow-Community (Algorithm 
6.5). Both find Web communities based on a given set of source nodes, S , as 
seeds. The Exact-Flow-Community algorithm assumes that the whole Web 
data as a graph is archived and exists. On the other hand, The Approximate-
Flow-Community algorithm does not assume that the whole Web data already 
exists in hand, and uses a subset of the entire Web data.  

The Exact-Flow-Community algorithm takes three inputs, a set of seed 
nodes, S , and the entire Web data as a graph, G , and an integer k . In Algo-
rithm 6.4, line 1-11, it creates a flow network with two virtual nodes, source 
s  and terminal t . All edges are associated with a capacity. Then, line 12, it 
calls a Ford-Fulkerson-Method to identify a minimum cut set, ( )s tV V,  over 

the flow network. In line 13, the nodes still connected to s  after the cut will 
be returned as the Web community identified by the set of seed nodes.  

The Approximate-Flow-Community algorithm (Algorithm 6.5) takes three 
inputs, a set of seed nodes, S , and two integers, d  and m . Note: it does not 
have the entire Web as an input into the algorithm. It attempts to enlarge the 
set of seed nodes, S , in an iterative way. In each iteration, line 3, it crawls 
from the set of seed nodes, S , with a given depth d , and constructs a partial 
Web data set as a graph G . The parameter k  (See Theorem 6.13) is set to be 
S| |  (line 4). In line 5, it calls Exact-Flow-Community to get a set of nodes, 

sV . Then, it ranks all the nodes in sV  by the number of edges in sV  (line 6). 

And in line 7, it adds the highest ranked non-seed nodes into the set of seed 
nodes, S . This procedure will repeat m  times. 

Flake et al. conducted the theoretical analysis and reported their findings in 
(Flake et al. 2004). 
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Algorithm 6.4 Exact-Flow-Community( S , G , k )
Input: a set of seed nodes, S , a graph ( )G V E, where S V⊆ , and a posi-
tive number k .
Output: a set of nodes
1. Let s and t be two additional virtual nodes;
2. { }V V s t← ∪ , ;
3. for each v S∈ do
4. add ( )s v, into E with an infinite capacity, ( )c s v, ← ∞ ;
5. for each ( )u v E, ∈ do
6. ( )c u v k, ← ;
7. if ( )v u E, ∈/ then
8. add ( )v u, into E with ( )c v u k, ← ;
9. for each v V∈ such as { }v S s t∈ ∪ ,/ do
10. add ( )v t, into E with ( ) 1c v u, ← ;
11. let ( )N s t V E c, , , , be a flow network;
12. ( )s tC V V, ← Ford-Fulkerson-Method( N );
13. return all sv V∈ still connected to s ;

Algorithm 6.5 Approximate_flow_community( S , d , m )
Input: a set of seed nodes, S , and two positive numbers, d and m .
Output: a set of nodes
1. 1n ← ;
2. while n m< do
3. ( )G V E, ← a graph crawl from S with a depth d ;
4. k S=| |
5. cV ← Exact-Flow-Community( S , G , k );
6. rank all v in cV by the number of edges in cV ;
7. add highest ranked non-seed nodes to S ;
8. 1n n← + ;
9. return all v V∈ still connected to S ;

6.5.3 IK Approach

One of the key issues in the FLGapproach is the edge capacity, c , and the pa-
rameter k used in Algorithm 6.4. As shown in Theorem 6.13, the parameter
k plays an important role in making the minimum cut remains unchanged
with virtual source and terminal. Flake et al. did not show how to determine
the edge capacity.

Imafuji and Kitsuregawa show the impacts of the edge capacity on the
quality of the Web community being found in (Imafuji and Kitsuregawa
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2003; Imafuji and Kitsuregawa 2004). They conducted the testing using a real 
Web archive. Three observations have been made. First, increasing edge ca-
pacity can increase the size of Web community. Second, it is difficult to de-
termine proper edge capacity. For example, the worst case is that there only 
exists a so-called quantum jump point of edge capacity. When the edge ca-
pacity is less than the quantum jump point, the Web community, based on a 
set of seed nodes, is too small. When the edge capacity is greater than or 
equal to the quantum jump point, the whole graph will be the Web commu-
nity. Third, the noises in the Web community cannot be easily removed by 
controlling the edge capacity. Here, noises are the Web pages in the Web 
community but are not related to the main topic of the Web community.  

..................

......
seed nodes

Extracted Not Extracted

va vb

............ ......

......

Fig. 6.6. The impacts of edge capacity 

Below, we introduce the analysis made in (Imafuji and Kitsuregawa 2004) 
for the third observation, using an example shown in Fig. 6.6 (Fig. 4 of 
(Imafuji and Kitsuregawa 2004)). As shown in Fig. 6.6, the set of seed nodes 
is illustrated as the top level nodes. The second layers are the nodes that con-
nected to the seeds, as the immediate neighbors. Consider the nodes at the 
second layers. There are two cases.  

• Case-1: A second layer node, v , connects many third layer nodes, 

1 2u u, ,L . The number of the nodes, iu , that have degree 1, is less than the 

edge capacities.  

• Case-2: A second layer node, v , connects many third layer nodes, 

1 2u u, ,L . The number of the nodes, iu , that have degree 1, is much 

greater than the edge capacities.  

Which one will be included in the Web community? In Fig. 6.6, av  is the 

first case, provided that the nodes pointed to by the node av  in the rectangle 
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are the nodes that have degree 1. All of them will be included in the Web
community, because the number of such nodes is less than the edge capacity
and therefore the flow going into av is greater than the flow going out of the

rectangle. bv is the second case, provided that the nodes pointed to by the

node bv in the polygon are the nodes that have degree 1. All of them will not

be included in the Web community, because the number of such nodes is
much greater than the edge capacity and therefore the flow going into bv is

less than the flow going out of the polygon. Note the nodes that are pointed
by bv and some other nodes at the second layers may be included in the Web

community.
Will the nodes in the first case be noises? The nodes in the rectangle

pointed by av can be noise, if they are pointed by many nodes that are not in

the Web community. Increasing the edge capacity will increase theopportuni-
ties to include them as noises. Note: using a small edge capacity may make
the entire Web community unreasonable small.

Should the nodes in the second case be included in the Web community?
The nodes in the polygon should not be included in the Web community, be-
cause such a node bv serves as a hub pointing to too many pages which are

most likely not to be related to the Web community.

............

... ..

............

v

V2V1

Vs

Fig. 6.7. The edge capacity

The Algorithm

Imafuji and Kitsuregawa proposed an algorithm, denoted IK. The key issue
is how to assign edge capacities to edges. They proposed a HITS based ap-
proach. They attempted to estimate the quantum jump point, q , that ensures a
reasonable size of the Web community. In other words, the quantum jump
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point is the minimum largest edge capacity that allows all edges to be unsatu-
rated. Let all the edge capacities be 1q − . Consider a node v  that has the 
largest degree. The total possible flow going into the node v  can be assumed 
as smaller than flow going out the node v . Such a node v  is most likely to be 
connected to the seed nodes, when the graph G  is constructed in Approxi-
mate-Flow-Community using a depth 2  (Algorithm 6.5, line 3). An example 
is shown in Fig. 6.7 (Based on Fig. 5 of (Imafuji and Kitsuregawa 2004)) , 
where v  is the node that has the largest degree, d . In Fig. 6.7, sV  represents 

the set of seed nodes, 1V  represents the set of nodes that are connected with v

and are with degree 1, and 2V  represents the set of nodes that are connected 

with v  and are with a degree which is greater than 1. Therefore, the degree of 
v  is  

1 2sd V V V=| | + | | + | |

And  

1( 1) 1s sq V V q V− ⋅ | |≤| | + ≤ ⋅ | |

Here, 1 1V| | +  represents the edges from v  to all nodes in 1V  and an edge to 

the virtual terminal node. Consequently,  

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
+= 11

sV

V
q

In (Imafuji and Kitsuregawa 2004), the edge capacity of an edge ( )i jv v,  is 

set as  

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ +
=

2

..
),( ji vavh

ji

arhr
vvc

(6.4)

Here, 
lva  and 

kvh  are the authority score and hub score obtained using HITS 

(Kleinberg 1998). And, max( ) max( )
k lh v vr a h= / , ar q= . Both hr  and ar

are needed to make the edge capacity be an integer, because 
lva  and 

kvh  are a 

real number between zero and 1. 

Algorithm 6.6 IK( S )

Input: a set of seed nodes, S .   
Output: a set of nodes  
1. repeat  
2.      ( )G V E, ←  a graph crawl from S  with a depth 2 ;  
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3. calculate all authority scores,
iva , and hub scores,

ivh , for all nodes
iv in G , using HITS (Kleinberg 1998).

4. Let s and t be two additional virtual nodes;
5. { }V V s t← ∪ , ;
6. for each v S∈ do
7. add ( )s v, into E with an infinite capacity, ( )c s v, ← ∞ ;
8. for each ( )u v E, ∈ do
9. ( )c u v, is assigned using Eq. (4).
10. if ( )v u E, ∈/ do
11. add ( )v u, into E with ( ) ( )c v u c u v, = , ;
12. for each v V∈ such as { }v S s t∈ ∪ ,/ do
13. add ( )v t, into E with ( ) 1c v u, ← ;
14. let ( )N s t V E c, , , , be a flow network;
15. ( )s tC V V, ← Ford-Fulkerson-Method( N );
16. let cV include all sv V∈ that are still connected to S ;
17. rank all v in cV by the number of edges in cV ;
18. add highest ranked non-seed nodes to S ;
19. until cV is converged
20. return cV ;

IK is outlined in Algorithm 6.6. Different from Approximate-Flow-
Community, it only takes a set of seed nodes. The flow network is constructed
for a set of seed nodes S . The edge capacity is set using Eq. (6.4) based on
HITS (Kleinberg 1998) (line 2-14). It then calls a Ford-Fulkerson-Method to
obtain a minimum cut ( )s tC V V, (line 15). The set of nodes that are still con-

nected to the seeds after the minimum cut is maintained in cV (line 16). The

ranking of all nodes, iv , in cV , line 17, is done as follows:

( ) ( ) ( )
i ii v i v irank v a in v h out v= ⋅ + ⋅ .

Here, ( )iin v and ( )iout v are the number of edges going into iv from a node

in cV and the number of edges going out from iv to a node in cV . The proc-

ess will repeat until cV is converged, (line 1-19). In line 20, the Web commu-

nity is returned as cV .

6.6 Web Community Charts

The previous sections discussed Web communities. In this section, we intro-
duce Web community charts (Toyoda and Kitsuregawa 2001; Toyoda and Ki-
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tsuregawa 2003). A Web community chart is a graph ( )G V E,  where V  is a 

set of Web communities and E  is a set of edges from a Web community to 
another Web community. We show an example taken from (Toyoda and Ki-
tsuregawa 2003), as shown in Fig. 6.8  (Based on Fig. 2 of (Toyoda and Ki-
tsuregawa 2003)). In this example, there are two Web communities, a vendor 
community and a user community. The vendor community consists of com-
panies, IBM, Toshiba and Sony as the centers, as well as the fans which point 
to them. The user community consists of Sony-PC-fan and Sony-PC-user as 
the centers, as well as the fans which point to them. Fig. 6.8 (a) shows the two 
Web communities. There are links from some fans of the user community to 
some centers of the vendor community. Fig. 6.8 (b) shows the Web commu-
nity chart. In order to find Web community charts, the notion of Web com-
munity needs to be refined, because the centers (authorities) and fans (hubs) 
are used to specify the Web communities themselves and the relationships 
among Web communities.  

We first discuss the notion of symmetric/asymmetric related pages. On 
Web, two Web pages, iv  and jv , are symmetric related if iv  derives jv  and 

jv  derives iv . As observed by Toyoda and Kitsuregawa, on Web, it implies 

that there are other Web pages that point to both iv  and jv . Two pages are 

asymmetrically related if either iv  derives jv  or jv  derives iv , but not both. 

The derivation relationship between two Web pages is dependent on an algo-
rithm, which derives a Web from another Web page based on some ranking. 
For example, the algorithm A  can be HITS (Kleinberg 1998), Companion 
(Dean and Henzinger 1999), or Companion- (Toyoda and Kitsuregawa 
2001). An example of the asymmetric related Web pages is given in (Toyoda 
and Kitsuregawa 2001). A fan page of a baseball team, iv , may derive an of-

ficial home page of the team, jv , by an algorithm A . But, with the same al-

gorithm A , the official home page of the team, jv , may not derive the fan 

page of the baseball team, iv . The reasons are, i) the official home page jv  is 

most likely linked by many hub pages together with other official home pages 
of baseball teams, and ii) the number of hubs linking to the official home 
pages of baseball teams (including jv ) is greater than the number of hubs 

linking to the fans of the baseball teams (including iv ).  

Definition 6.14. Given two nodes, iv  and jv  in a graph G . Consider an al-

gorithm, A , which, for a given node iv , can derive a node jv . It is said that 
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iv derives jv . If iv derives jv and jv derives jv , the two nodes iv and jv

are said to be symmetrically related. If iv derives jv but jv cannot derive

jv , the two nodes iv and jv are said asymmetric related.

Definition 6.15. A Web community is a dense directed bipartite graph
( )G V E, where V is divided into two disjoint subsets, 1V and 2V . In addi-

tion, iV , for 1 2i = , , is a set of nodes that are strongly connected by the

symmetric relationship (symmetric related).

Fig. 6.8(c) shows that every two nodes among either fans or centers are
symmetric related. In the following, we give the details of the Companion-
(Toyoda and Kitsuregawa 2001; Toyoda and Kitsuregawa 2003) following
the results in (Toyoda and Kitsuregawa 2001; Toyoda and Kitsuregawa 2003)
that Companion- gives better precision than HITSand Companion when find-
ing related pages.

Sony

Toshiba

IBMv1

v2

v3

Sony−PC−userv4

v5 Sony−PC−fan

Vendor

User

Sony

IBM Toshiba

Sony−PC−fan

Sony−PC−user

(a) (b) (c)

Fig. 6.8. A Web community chart

6.6.1 The Algorithm

The Web community chart shown in Fig. 6.8 is found with a set of seeds in-
cluding IBM, Toshiba Sony, Sony-PC-fan and Sony-PC-user using an al-
gorithm called Build-Chart which constructs a Web community chart

( )G V E, from Web data.
Algorithm 6.7 outlines the Build-Chart algorithm proposed in (Toyoda and

Kitsuregawa 2001; Toyoda and Kitsuregawa 2003). Build-Chart takes a set of
seed pages, aV , Web data as a graph ( )w w wG V E, , and a positive number N
which is used to derive symmetric related pages. There are four main steps.
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First, in line 1-6, it constructs an authority derivation graph, ( )a a aG V E, , us-

ing Companion- (Algorithm 6.8) (Toyoda and Kitsuregawa 2003). Second, in 
line 7, it further extracts a symmetric derivation graph, ( )s s sG V E, , from the 

authority derivation graph, ( )a a aG V E, , found in the first step, using a proce-

dure called Extract-Symmetric. Third, it calls a procedure Extract-core to ex-
tract a set of communities, V . Note: a node in V  is a Web community. Fi-
nally, it constructs a graph ( )G V E,  by adding edges between communities. 
We discuss them below in detail. 

Algorithm 6.7 Build-Chart ( aV , wG , N )  

Input: a set of seed nodes, aV , a graph ( )w w wG V E,  where a wV V⊆ , and a 
positive number N .   
Output: a Web community chart ( )G V E, . 
1. aE ←∅ ;  
2. for each i av V∈ do
3.     V ′←  Companion-( iv , wG , N );  
4.    {( ) ( )}i j j aE v v v V V′ ′← , | ∈ ∩ ; 
5.    a aE E E′← ∪ ;  
6. Let ( )a a aG V E,  be a graph; 
7. ( )s s sG V E, ←  Extract-Symmetric( aG );  
8. V ←  Extract-core( sG );  
9. Construct a Web community chart ( )G V E, ;  
10.return ( )G V E, ;    

The algorithm Companion- plays an important role in constructing the au-
thority derivation graph, which is outlined in Algorithm 6.8. For each seed 

sv , Companion- first, in line 2, identifies a set of nodes pV  pointing to sv , 

which is a subset of nodes in the Web graph ( )w w wG V E,  such as p wV V⊆ . 

Second, in line 2, it further identifies a set of nodes that are pointed to by at 
least one node in pV . Third, it identifies a set of nodes, V , including the 

seed, and pV  and cV  (line 3). Fourth, in line 4, it constructs a vicinity graph 

( )G V E,  where {( ) ( ) }i j i j i j wE v v v V v V v v E= , | ∈ ∧ ∈ ∧ , ∈ . The set of 

edges includes all edges that connect two nodes in V . Fifth, line 5-6, it as-
signs authority weight, ( )i jaw v v, , and hub weight, ( )i jhw a v, , for an edge 

( )i jv v,  in the set of edges, E , of the vicinity graph. Companion- uses the 

similar ways of assigning an authority weight and a hub weight to an edge 
(Bharat and Henzinger 1998), as follows.  



6.6 Web Community Charts 137

• The authority weight and hub weight of an edge, ( )i jv v, , are zero,

( ) 0i jaw v v, = and ( ) 0i jhw v v, = , if both iv and jv are from the same

Web server,
• The authority weigh of ( )i jv v, is ( ) 1i jaw v v n, = / if there are n edges

from the same Web server to jv and iv is one of them.

• The hub weigh of ( )i jv v, is ( ) 1i jhw v v m, = / if there are m edges from

iv to the same Web server, and jv is one of them.

Sixth, in line 7-9, it computes authority score, ( )ia v , and hub score, ( )ih v

for any node in V , until all the authority scores and the hub scores are con-
verged. We show them below.
• Initialize ( )ia v and ( )ih v , for all iv V∈ .

•
( )

( ) ( ) ( )
i j

i j i jv v E
h v a v hw v v

, ∈
= ⋅ ,∑ .

•
( )

( ) ( ) ( )
j i

i j j iv v E
a v h v aw v v

, ∈
= ⋅ ,∑ .

Finally, it returns the top N highest authority nodes from V . Note, each
( )ia v is normalized in a way that the sum of the squares is 1, and each ( )ih v

is normalized in a way that the sum of the squares is 1.

Algorithm 6.8 Companion ( sv , wG , N )

Input: a seed node, sv , a graph ( )w w wG V E, where s wv V∈ , and a positive

number N .
Output: a set of authorities.
1. ( )p sV parent v← ;
2. ( )

pc v VV child v
∈

←∪ ;
3. { }s p cV v V V← ∪ ∪ ;
4. let ( )G V E, be a vicinity graph where E is a set of edges wE E⊆ ;
5. for each ( )i jv v E, ∈ do
6. assign an authority weight, ( )i jaw v v, , and a hub weight ( )i jah v v, ;
7. repeat
8. compute an authority score, ( )ia v , and a hub score, ( )ih v , for every

iv V∈ ;
9. until all ( )ih v and ( )ia v are converged
10.return the top N highest authority nodes;
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Based on the authority derivation graph, ( )a a aG V E, , the symmetric deri-

vation graph, ( )s s sG V E, , can be easily constructed where s aV V=  and 

{( ) ( ) ( ) }s i j i j a j i aE v v v v E v v E= , | , ∈ ∧ , ∈ .  

The Web communities are extracted as follows from the symmetric deriva-
tion graph, ( )s s sG V E, . It finds a complete directed subgraph consisting of 3 

nodes – every 2 nodes point to each other. The 3 node complete directed sub-
graph is called a 1-connected subgraph, which is treated as a Web commu-
nity. There are a set of Web communities (1-connected subgraphs). Let 1G

and 2G  be two Web communities, 1 2G G≠ , 1G  and 2G  may share some 

common nodes. There are some nodes in sV  that do not belong to any Web 

communities. Suppose iv  is such a node that does not belong to any Web 

communities, but is symmetric related to some nodes that are in some Web 
communities. Such a node will be assigned to a Web community if the Web 
community has the most incoming edges in the authority derivation graph 

( )a a aG V V, . After the assignments, there may still exist some nodes that do 

not belong to any Web communities. They are formed as Web communities if 
they are connected. The procedure Extract-core will return a set of such Web 
communities, V .  

The Web community chart, ( )G V E, , is a weighted directed graph. Based 

on the authority derivation graph, ( )a a aG V E, , an edge, i jv v, , is in E  if 

there are links from some nodes of the Web community iv  to some nodes in 

the Web community jv . The weight is the number of such edges. Fig. 6.9 

shows a Web community browser developed by the research group led by Ki-
tsuregawa at the University of Tokyo. 

6.7 From Web Community Chart to Web Community 
Evolution 

Web community chart identifies relationships among Web communities. The 
following question is whether it can find how Web communities evolve, 
which was studied in (Toyoda and Kitsuregawa 2003).  

Let a Web community chart, G V E, , and a Web community, v G∈ , at 

time t , be denoted as ( )G t  and ( ) ( )v t G t∈ , respectively. Consider two Web 

community charts, ( )kG t  and ( )lG t  where k lt t< , and kt  and lt  are close 
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enough to detect Web community changes. There are five cases, at time lt , in

comparison to the Web communities at time ( )k lt t< namely, emerged Web

communities, dissolved Web communities, grown or shrunk communities,
split communities, and merged communities (Toyoda and Kitsuregawa 2003).
An emerged Web community ( )lv t is a Web community in ( )lG t that does

not appear in ( )kG t . A dissolved Web community ( )lv t is a Web community

in ( )kG t but does not appear in ( )lG t . A grown community ( )lv t exists in

( )lG t if ( )lv t is a superset of the corresponding ( )kv t that exists in ( )kG t .

A shrunk community ( )lv t exists in ( )lG t if it is a subset of the correspond-

ing ( )kv t that exists in ( )kG t . A Web community ( )kv t in ( )kG t may be

split into two smaller Web communities ( )lv t and ( )lv t′ . Two smaller Web

communities ( )kv t and ( )kv t′ in ( )kG t may be merged into a Web commu-

nity ( )lv t in ( )lG t .

Because Web community charts at two different times, kt and lt , are ex-

tracted from two different Web archives, one of the important issues is to find
a mechanism to determine a Web community, ( )kv t , that corresponds to a

Web community ( )lv t , or a Web community, ( )lv t , that corresponds to a

Web community ( )kv t . In addition, a Web community, v , at time kt , may

share URLs with many different Web communities at time lt . In (Toyoda and

Kitsuregawa 2003), the corresponding Web community v , at time lt ( kt ), to

the Web community at time kt ( lt ) is the community that shares the most

URLs with v at time lt ( kt ).

The evolution metrics are introduced in (Toyoda and Kitsuregawa 2003).
Several basic measures are given below.
• ( ( ))kN v t : the number of URLs in the Web community v , at the time kt .

• ( ( ) ( ))sh k lN v t v t, : the number of URLs that are shared by the same Web

community, v , at times, kt and lt .

• ( ( ) ( ))dis k lN v t v t, : the number of URLs of the same Web community v ,

that exist at time kt but disappear at time lt .
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• ( ( ) ( ))sp k lN v t v t, : the number of URLs of a Web community v  that exist at 

time kt , but are split to some Web communities at time kt .  

• ( ( ) ( ))ap k lN v t v t, : the number of URLs of a Web community v  that appear 

at time lt  but do not exist at time kt .  

• ( ( ) ( ))mg k lN v t v t, : the number of URLs of a Web community v  that are 

merged into v  at time lt  from Web communities at kt .  

Some evolution metrics are given below, for j k lt t t< <  including the growth 

rate, gR , (Eq. (6.5)), the stability, sR  (Eq. (6.6)), the novelty, nR  (Eq. (6.7)), 

the disappearance rate, dR  (Eq. (6.8)), the merge rate, mR  (Eq. (6.9)), and the 

split rate, pR  (Eq. (6.10)). These evolution metrics combined can specify a 

wide range of sophisticated metrics for Web community evolution.  
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6.8 Uniqueness of a Web Community

Michael Brinkmeier in (Brinkmeier 2002) investigated Web communities and
focused on the uniqueness of Web communities using a graph-theoretical ap-
proach. Given a subgraph hG of a graph G , Brinkmeier considers a Web

community, for hG , is the largest subgraph with maximal edge-connectivity

of all subgraphs that contains hG . The hypothesis based on is that nodes of a

Web community are supposed to be stronger connected to each other than to
an arbitrary node outside of the Web community. As notice, different from
the previous approaches which find a Web community as a set of Web pages
starting from seed pages, Brinkmeier focuses on finding a Web community
for a given subgraph.

Several notations are given below before introducing the definition of a
Web community. Consider Web as a undirected graph ( )G V E, where an
edge is associated with a positive weight. For simplicity, the graph does not
have self-loops and multiple edges between two nodes. Note: self-loops is an
edge from a node to itself. Multiple edges between two nodes can be managed
as a single edge with a weight which is the sum of the weights of the multiple
edges. A cut cE of a graph ( )G V E, is a subset of edges, cE E⊆ , such as

the resulting graph of ( )cG C V E E= ,‚ ‚ is disconnected. The minimum

cut of G is a cut with minimal sum of the weights of the edges in the cut. A
minimal cut divides a connected graph into two connected subgraphs. The
edge-connectivity of G , denoted ( )conn G , is the weight of a minimal cut of

G . Note: different from the minimum cut for flow networks discussed in
Sect. 6.5.1, the minimal cut does not consider source and terminal nodes.

Definition 6.16. Given a subgraph hG in a graph G , a Web community of

hG is the largest subgraph of the maximal edge-connectivity containing hG ,

denoted ( )cG G⊆ , such as

• h cG G⊆ ,

• ( ) ( )c dconn G conn G≥ if h dG G G⊆ ⊆ , and

• d cG G⊆ if h dG G G⊆ ⊆ and ( ) ( )d cconn G conn G= .

Let ( )G hComm G denote the Web community of hG in a graph G . There

exists a unique community ( )G hComm G where ( )G hComm G is an induced
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subgraph of G .1 The uniqueness can be shown below. Suppose that there are 
two Web communities for hG , denoted iC  and jC . Based on Defini-

tion 6.16, i jC C⊆  and j iC C⊆ . Therefore, ( )G hComm G  is unique.  

Brinkmeier showed the possible relationships between two Web communi-
ties, in a Theorem in (Brinkmeier 2002), such as exact one of the following 
statements is true for two subgraphs 

1hG  and 
2hG  in a graph G .  

•
1 2

( ) ( )G h G hComm G Comm G∩ =∅ .  

•
1 2G h G h⊂ .  

•
2 1

Comm G Comm G⊂ .  

•
1 2

( ) ( )G h G h= .  

Obviously, the first case is true in some cases. For the remaining, 
( ) ( )

i jG h G hComm G Comm G∩ ≠∅ . Here, ( ) ( )
i jG h G hComm G Comm G⊆  if 

( ( )) ( ( ))
j iG h G hconn Comm G conn Comm G≥ . The second and third cases are when 

( ( )) ( ( ))
i jG h G hconn Comm G conn Comm G≠ , whereas the fourth case is 

when ( ( )) ( ( ))
i jG h G hconn Comm G conn Comm G= . Based on the above find-

ing, it is shown that communities are completely determined by their nodes 
and edges in (Brinkmeier 2002). 

                                                  
1Given two graphs, ( )h hG V E,  and ( )G V E, . hG  is a subgraph of G  if hV V⊆

and hE E⊆ . An induced graph of hG  is a subgraph of G  that contains all nodes in hV

and all edges between any two nodes in hV  that exist in E .
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7 Web Community Related Techniques

In this Chapter, we briefly introduce several techniques that can be used to-
gether to either find Web communities or analyze Web communities. Sect.
7.1 introduces a technique that explores Web communities based on user ac-
cess patterns from Web logs. Sect. 7.2 discusses how to use co-occurrences to
enlarge Web communities. Sect. 7.3 introduces Web communities from a
high-level Web graph where a node is a Web site rather than a Web page.
Sect. 7.4 shows that formal concept analysis can also help to find Web com-
munities. Sect. 7.5 and Sect. 7.6 introduce two approaches to model Web
communities. In Sect. 7.5, we introduce an approach to build a model that can
capture both the global structure of Web properties as the entire graph and the
local Web communities as subgraphs. Sect. 7.6 outlines an idea to model Web
communities with attempts to generate Web communities based on some
rules. Next two sections, we introduce how to estimate the geographical scope
of a Web site (Sect. 7.7), and how to discover the unexpected information
from other authoritative Web sites as centers in Web communities (Sect. 7.8).
Sect. 7.9 presents an approach based on probabilistic latent semantic analysis,
to discover usage-based Web page categories.

7.1 Web Community and Web Usage Mining

Pierrakos et al. presented a way of constructing Web communities using Web
logs archived in a proxy server (Pierrakos et al. 2003; Pierrakos et al. 2003).
The overview is given below. First, when users access the WWW, their Web
access requests go through a proxy server where the Web logs are archived.
The Web logs contain the basic information, such as which Web pages are
accessed from which IP addresses. Second, based on the archived Web logs,
the Web pages being accessed are recorded. A Web page can be abstracted as
a feature vector where a feature indicates whether the corresponding word
appears in the Web page. The page categories can then be obtained using a
hierarchical clustering to cluster Web pages being accessed, where the simi-
larity is based on the words that frequently appear in Web pages. The cluster-
ing results in a tree structure where a leaf node represents a cluster of Web
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pages which share high similarity. The internal node represents a larger clus-
ter which includes smaller clusters as represented by the child nodes of the in-
ternal node. The root node represents all Web pages as a top largest cluster. A 
page category is a node in the tree. There exist parent/child relationships 
among page categories. A page category, ip , is the parent of another page 

category, jp , if ip  is the parent node of jp  in the resulting tree. Also, there 

exist ancestor/descent relationships among page categories. A page category, 

ip , is an ancestor of another page category, jp , if there is a path from ip  to 

jp  in the resulting tree. A page category is represented as a feature vector 

which consists of the most important descriptive words of the page category. 
Third, also based on Web logs, user access sessions can be obtained using an 
existing Web log mining approach. A user access session, as a feature vector, 
represents the page categories a user accesses in a time window. Note, a Web 
page being accessed can be mapped onto the proper page categories. Finally, 
based on the page categories and access sessions, a Web community can be 
identified as a maximal clique using an algorithm called Community Direc-
tory Miner (CDM).  

The details of the algorithm CDM is given below. Consider an edge/node 
weighted undirected graph ( )G V E, . Here, V  is a set of nodes representing 

page categories. There exists an edge from node iv  to node jv  if there exists 

a user access session in which a user accesses both iv  and jv . A node weight 

is counted on feature occurrences, and an edge weight is counted on feature 
co-occurrences. Recall a Web page in a page category (node) is treated as a 

vector. Let ija  be the value of a feature i  in a node jv , and ia  be the value 

of a feature i  that appears in both nodes jv  and kv . The node weights and 

edge weights are computed as follows.  
• Basic Node Weights: Suppose that there exist n  Web pages in a page 

category. The weight of a feature i  is denoted iw  for the page category, 

and is computed as  

1

n

ijj
i

a
w

n
=

= .

∑

• Basic Edge Weights: Suppose that there exist n  user access sessions that 
access both page categories, iv  and kv . The weight of the edge between iv

and kv  is denoted ikw , and is computed as  
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1

n j
ikj

ik

a
w

n
=

= .

∑

• Accumulated Node/Edge Weights: A weight of a feature in a page cate-
gory, iw , is the weight of itself plus all the weights of its child page cate-

gories. In a similar fashion, the weight of an edge between page categories,

ip and jp , is accumulated by the weight of the edge between ip and jp

as well as all the weights of the edges between mp and np if mp is a child

of ip and mp is a child of jp . As discussed in (Pierrakos et al. 2003; Pi-

errakos et al. 2003), the accumulated node/edge weights help to include
more page categories as a part of Web communities. In other words, a
weight of page category or a weight between a pair of page categories may
be low, but they can help their ancestors to be a part of Web community.
The above shows how to construct a weighted undirected graph. The re-

sulting weighted undirected graph may have high connectivities. Some edges
of the graph are pruned using a threshold. That is, if a weight of an edge is be-
low a given threshold, the edge will be deleted. After pruning edges, the CDM
algorithm converts the weighted undirected graph into an undirected graph,
and then finds maximal cliques using the approach given in (Bron and Ker-
bosch 1973). The found Web communities can be used to build a Web com-
munity directory (Pierrakos et al. 2003; Pierrakos et al. 2003). A similar Web-
log based system is presented in (Otsuka et al. 2004).

7.2 Discovering Web Communities Using Co-occurrence

Murata proposed a way to create a Web community using HITSalgorithm and
enlarge the Web community using co-occurrence. Murata’s algorithm starts
with an initial set of Web pages, denoted IC , which are taken as the initial

centers (Murata 2000; Murata 2001), and enlarges IC in the following two

steps. First, the fans, FC , are determined if they co-refer to all of the centers

IC . Here, the meaning that a Web page, p , co-refers to all the pages in IC

is that there are links from the page p to all the pages IC . If the Web pages

in IC are important Web pages, there exists a large number of Web pages

pointing to all the pages in IC . Therefore, the set of FC can be too large.

Murata suggested to select the Web pages in FC using an existing ranking.
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The remaining task is to enlarge IC  as to find a larger set of centers, which is 

the goal of the proposed approaches. Second, in order to enlarge IC , it ex-

tracts all the links (URLs) from all the fans – all the Web pages in FC . Note: a 

link may appear many times in a single Web page and in all Web pages con-
tained in FC . All those links are sorted based on the frequency. In other 

words, the links that appear more will be ranked higher. The link ranked 
highest is considered as to be most close to the existing centers. Therefore, 
the top-ranked link will be added into IC  as an additional center. The above 

two steps will repeat to adding more centers into IC  until the number of fans 

that co-refer to all the enlarged IC  becomes small. We call this algorithm 

Comm-Enlarge which is outlined in Algorithm 7.1. 

Algorithm 7.1 Comm-Enlarge ( IC ,τ ) 

Input: a set of initial centers IC , a threshold τ ;   
Output: a set of centers including IC   
1. Let FC  be the set of all Web pages that co-refer to all the pages in IC ;  
2. While FC τ| |≥
3.     let L  be a set of Web pages linked by all Web pages in FC ;  
4.     sort L  based on the co-occurrence;  
5.     select the top-ranked Web page in L , and add it into IC ;  
6.     FC  be the set of all Web pages that co-refer to all the pages in IC ;  
7. return IC ; 

One question addressed further in (Murata 2000) is whether the newly 
added centers really contain the similar contents like those that are already in 

IC . In other words, the question is how to ensure that the newly added link 

can be considered as a new center. In order to ensure the quality of centers, 
they take a pair-wise approach. For a given set of initial Web pages, IC , of 

size n . It generates a set of initial inputs, 
1 2I IC C, ,L , where each 

jIC  con-

tains two Web pages. In other words, for a size of n  initial IC , there are 2n C

pairs. Each 
kIC  can be enlarged individually by calling Comm-Enlarge(

kIC , 

τ ). Let 
kIC′  be the enlarged set returned by Comm-Enlarge(

kIC , τ ). Mu-

rata proposed to rank those newly found centers by the number of occur-
rences. The top-ranked ones will be closed to most of centers in the initial IC
and will be regarded as new centers.  
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The above question implicitly asks whether there is a boundary between
the related centers and unrelated centers. (Murata 2003) suggests using two
sets of centers, a set of positive centers IC , and a set of negative centers NC .

The positive centers are the centers a user wants to enlarge, whereas the nega-
tive centers are used as hints to assist finding the boundary. Intuitively, it
hopes that enlarging IC and NC respectively will reach a point that both

enlarged IC and NC share the common centers where the boundary exists.

The above approach is to explore Web communities based on link co-
occurrence. Ohsawa et al.. studied Web communities using word co-
occurrence structure in textual messages (Ohsawa et al. 2002).

7.3 Finding High-Level Web Communities

Most algorithms find Web communities from a Web graph wherea Web page
is a node and an edge is a link between two Web pages. However, a Web
page may be considered as too primitive to represent a topic. In (Asano et al.
2003), Asano et al. studied how to find Web communities based on Web sites
rather than Web pages, because Web sites can be more representative as a
whole on certain topics. As a result, the nodes in a Web graph are Web sites
and the edges links Web sites. The Web communities found on such a Web
graph can give a general view on Web information.

Some Web sites are easy identified, such as Amazon, Google, etc, because
these Web sites are hosted on a single Web server identified by an URL ad-
dress. It is interesting to know that it is not easy to identify all Web sites, be-
cause there are many Internet service providers at which many companies and
individual users can host their own Web sites. In other words, a single Web
server can host many Web sites, and the locations/boundaries of such Web
sites are hard to determine.

In (Asano et al. 2003), several heuristics were presented to identify Web
sites in a Web server. Some Web servers are known to host Web sites at a
certain level, for example, the third level from the root of the Web server.
Many Web servers use a tilde (~) as default to indicate the root of a personal
Web site. Asano et al. identify the boundaries of Web sites in a Web server
based on connected components/cliques.

In the following, we introduce the multi-view Web graph (Asano et al.
2003), and its construction algorithm.

We start our discussion from a Web graph ( )G V E, where V is a set of

Web pages and E is a set of links. A multi-view graph is defined on top of
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( )G V E,  as follows. At level-1, ( )G V E,  shows all the detailed structural in-
formation. At level-2, the structural information inside a Web site as a sub-
graph of ( )G V E,  is ignored, and every Web site is viewed as a single node. 

There exists a link from a Web site A  to a Web site B  if there is a link from 
a Web page in A  to a Web page in B . At level-3, the structural information 
inside a Web server, where many Web sites are hosted, is ignored, and every 
Web server is viewed as a single node. There exists a link from a Web server 
X  to a Web server Y  if there is a Web page in X  points to a Web page in 
Y .  

The algorithm presented in (Asano et al. 2003) is to construct a level-2 
Web subgraph from the level-1 Web graph, based on a set of URLs as user in-
put. After the level-2 Web subgraph has been constructed, any existing algo-
rithm to find Web communities can be applied. The overview of the algo-
rithm is shown in Algorithm 7.2. We call it Find-WAW, which is short for 
finding Web communities at Web site level. Algorithm 7.2 takes two parame-
ters: a set of URLs, and a parameter, n , which controls the growth of the 
level-2 Web graph starting from the initial Web pages. In Algorithm 7.2, the 
level-2 Web graph is first initialized as an empty graph (line 1). In line 2-4, it 
initializes several variables needed for construct the level-2 Web graph. In 
brief, T  is used to keep a set of graphs where each graph represents a Web 
site. vN  is used to keep a set of URLs for any newly found root of Web sites, 

and eN  is used to keep pairs of URLs for Web links. In line 5, it calls Con-

struct-L2-Graph to construct the initial level-2 Web graph. Note: the first 
variable U  is call-by-value, and the following variables are call-by-reference. 
In line 6-11, it expands the initial level-2 Web graph found in line 5 by n
times. Every time, it expands the level-2 Web graph by adding neighbor Web 
sites of the found Web sites in 2G . Note: the newly found Web sites are kept 

in the variable vN  which is returned by the previous Construct-L2-Graph. In 

line 12, it finds Web communities using any of the algorithms we discussed 
before. In line 13, it returns the found Web communities.  

Algorithm 7.2 Find-WAW (U , n ) 
Input: a set of initial Web pages U , and a parameter, n , to control the 
growth of level-2 Web graph;   
Output: a set of Web communities found at level-2 Web graph 2 2 2( )G V E, ;   
1. let 2 2 2( )G V E,  be an empty level-2 Web graph;  
2. let T  be an empty set of working graphs;  
3. let vN  be an empty set of URLs;  
4. let eN  be an empty set of URL pairs as Web links;  
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5. Construct-L2-Graph 2( )v eU G T N N, , , , ;
6. While 0n > do
7. vU N← ;
8. let vN be an empty set of URLs;
9. let eN be an empty set of URL pairs as Web links;
10. Construct-L2-Graph 2( )v eU G T N N, , , , ;
11. 1n n← − ;
12. find Web communities, W , on top of 2G using an existing algorithm;
13. return W ;

Below we briefly introduce the construction algorithm Construct-L2-
Graph. First, it identifies the roots of Web sites using some heuristics based
on the given set of URLs, U . The roots will be the nodes, 2V , of the level-2

Web graph, 2G . Second, starting from the root of each Web site, it constructs

a subgraph, to represent the Web site, by traversing the level-1 Web graph
following the breadth first order up to a limit. During the breadth first tra-
versal, if it finds an URLwhich is not in the Web server where the Web site is
hosted, it adds it into vN (as a new potential neighbor of the Web site). vN

will be U as the input to Construct-L2-Graph in the next run to enlarge the
level-2 Web graph. Also, if there are links from a Web page in a Web site in

2V to a Web page in another Web site in 2V , the corresponding edges be-

tween the two Web sites will be added into the edge set, 2E , of the level-2

Web graph, 2G . Third, for those URLs in U that the simple heuristics cannot

identify any Web sites, it will use some advanced heuristics to identify Web
sites using cliques.

7.4 Web Community and Formal Concept Analysis

Formal concept analysis (FCA) is a formal approach to study conceptual
structures among data sets (http://www.upriss.org/uk/fca). Romeand Haralick
presented an approach to explore Web communities in (Rome and Haralick
2005), as the maximally complete directed bipartite subgraph, based on FCA,
which we will discuss in this section. In the following, we brief introduce
FCA, and then discuss Web community exploration based on FCA.
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7.4.1 Formal Concept Analysis 

In (Banter and Wille 1999), Ganter and Wille discussed the mathematical 
foundations of FCA. A data set is a set of objects with attributes that describe 
the properties of the data elements in the set. A context is a triple ( )G M I, ,

where G  is the domain of objects (the extent), and M  is the domain of at-
tributes (the intent), I  is a binary relation such as I G M⊆ × . A concept in 

the context is a pair ( )G MC C, , where ( )GC G⊆  is a set of objects that have 

all the attributes in ( )MC M⊆ . The binary relation I  can represent the sub-

concept/super-concept relationship existing among concepts. Let 
( )

i ii G MC C C= ,  and ( )
j jj G MC C C= ,  be two concepts. iC  is a sub-concept 

of jC  (at the same time jC  is a super-concept of iC ), denoted i jC C≤ , if 

i jG GC C⊆  or equivalently, 
j iM MC C⊆ . The ordered set of all concepts of 

the context ( )G M I, ,  forms a concept lattice, denoted by ( )B G M I, , . The 
details of the mathematical foundations can be found in (Banter and Wille 
1999).  

7.4.2 From Concepts to Web Communities 

Rome and Haralick in (Rome and Haralick 2005) considered a context 
( )G M I, ,  as a Web graph. Here, both G  and M  are Web pages, and I  is a 
set of links that connect Web pages. Note: different from the original defini-
tion of the context, here, M  is not a set of attributes but a set of objects like 
G . M  and G  may overlap. A concept ( )G MC C C= ,  is then considered as 

a complete directed  bipartite subgraph where GC  is a set of fans and MC  is a 

set of centers. Therefore, a concept is considered as a Web community. There 
are many rather small Web communities, and Rome and Haralick in (Rome 
and Haralick 2005) considered to merge small Web communities as a large 
Web community by using the existing techniques to coalesce concepts 
(Haralick 1974; Funk et al. 1998). 
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Table 7.1. An Example

Object (x) Relation (I(x))
1 2,6,9
2 10,11
3 2,6,9
4 6,9
5 2,6
6 10,12
7 2,6,9
8 10,12
9 10,11,12
10 1,3
11 1,3
12 1,3
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7

1

12

11

10

8

4

Fig. 7.1. The graph representation of Table 7.1

Table 7.2. The 9 complete directed bipartite graphs

Name Fans ( fV ) Centers ( cV )

A {1, 3 7} {2, 6, 9}
B {2, 9 } {10, 11 }
C {1, 3, 4, 7} {6, 9}
D {1, 3, 5, 7} {2, 6}
E {6, 8, 9} {10, 12}
F {9} {10, 11, 12}
G {10, 11, 12} {1, 3}
H {2, 6, 8, 9} {10}
I {1, 3, 4, 5, 7} (Berry et al.)
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Fig. 7.2. The Concept Lattice  

We use the same example in (Haralick 1974; Rome and Haralick 2005) to 
illustrate the main ideas. The example is shown Table 7.1 (Haralick 1974; 
Rome and Haralick 2005). In Table 7.1, an object, x , can be considered as a 
node in a graph, and the relation ( )x  shows that there is an edge from x  to 

each object in the relation ( )I x . The graph representation of Table 7.1 is 

shown in Fig. 7.1. Recall a complete directed bipartite graph ( )CG V E,  is de-

fined in Definition 6.2. The set of nodes V  consists of two disjoint sets, cV

(centers) and fV  (fans). Every node in fV  points every node in cV . We use 

the ( )f cV V,  to represent a complete directed bipartite graph. There are 9 

complete directed bipartite graphs in Fig.  7.1, as summarized in Table 7.2 
(Haralick 1974; Rome and Haralick 2005).  

The 9 complete directed bipartite graphs are 9 Web communities as sub-
graphs, and 9 concepts at the same time. The concept lattice on top of the 9 
concepts is shown in Fig. 7.2 (Figure 4 in (Rome and Haralick 2005)). To 
form a large Web community from the small Web communities is to coalesce 
the corresponding small concepts.  

The coalescing concept is to add information into the binary relation I  to 
form a large concept. In terms of Web communities, it implies to add proper 
edges to make several small complete directed bipartite graphs as a large 
complete directed bipartite graph. As shown in (Haralick 1974; Rome and 
Haralick 2005), by adding 2  and 9  into the relation (4)I  and (5)I  in Table 

7.1, or by adding edges (4 2),  and (5 9),  into the corresponding graph in Fig.  
7.1, respectively, a large concept, or a large Web community, can be identi-
fied as shown in the dashed circle containing the four concepts I , D , C  and 
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A in Fig. 7.2. The large Web community has a set of fans, {1 3 4 5 7}fV = , , , , ,

and a set of centers, {2 6 9}cV = , , . Why can we add more edges into the Web

graph? Rome and Haralick justified the reason in (Rome and Haralick 2005):
I is prone to error, and this is especially true when dealing with the Web.
Rome and Haralick used a horizontal decomposition technique (Haralick
1974) to coalesce concepts, and reported their findings in (Rome and Haralick
2005).

7.5 Generating Web Graphs with Embedded Web
Communities

In the previous sections, we introduced several algorithmic approaches for
finding Web communities. In (Tawde et al. 2004), Tawde et al. indicated a
great concern: how to build a model that can capture both the global structure
of Web properties as the entire graph and the local Web communities as sub-
graphs. They presented a three step approach on generating Web graphs with
embedded communities. In the first step, they construct Web communities us-
ing the preferential and random link distribution (Pennock et al. 2002). In the
second step, they construct combined Web communities by taking the interac-
tion among the found communities into consideration (Chakrabarti et al.
2002). In the last step, they reexamine the found communities in the Web
data. In the following, we introduce the first step in generating a Web com-
munity.

The Web community is considered as in Definition 7.1 (Tawde et al. 2004).
Unlike the others, it attempts to describe a Web community using link distri-
bution, rather than as bipartite graphs or network flows.

Definition 7.1. A Web community is a set of n nodes whose link distributions
can be described by two parameters, iα and oα , for inlink and outlink

distributions.

The idea of using link distribution comes from the network growth model
(Pennock et al. 2002), in which, Pennock observed that there exist qualita-
tively and considerably less biased link distributions. The network growth
model consists of two main components, the preferential attachment and the
uniform random attachment. The preferential attachment explains the network
growth by the observation that a popular Website becomes much more popu-
lar, which leads to power law distribution (Mitzenmacher 2004). Theuniform
random attachment considers an unpopular Website that can be linked by us-
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ers due to the users personal interest and has the possibility to grow. Consider 
a Web community, and let ik  be the current number of edges incident on 

node iv . In (Pennock et al. 2002), the probability that an edge connects to 

node iv  is specified as ( )ikΠ .  

0

1
( ) (1 )

2
i

i

k
k

mt n t
α αΠ = ⋅ + − ⋅

+

(7.1)

Here, t  is the number of nodes added to the initial number of nodes in the 
Web community, and 0n t+  is the total number of nodes in question. Let 

2m  be the average number of edges per node, 2mt  shows a popular case 
such as a node is added with 2m  edges. Eq. (7.1) uses α  for preferential at-
tachment, and 1 α−  for uniform random attachment.  

Tawde’s algorithm for generating link distribution is given below. It starts 
from an empty Web community LV . At every t  step, a node together with p

outlinks and q  inlinks is added into LG . This step will repeat n  times. At the 

end of the n  steps, LV  consists of two disjoint and equal-size subsets 
oLV  and 

iLV  such as 
o iL LV V n| |=| |= . Every node in 

oLV  has many outlinks but the 

destinations of the edges have not been decided. Every node in 
iLV  has many 

inlinks but the sources of the edges have not been decided. The probability for 
a node, iv , to be selected to connect an edge is based on Eq. (7.1). Specifi-

cally, when an inlink is connected to the selected node, iv , a source node 

needs to be selected. When an outlink is connected from the selected node, 

iv , a destination node needs to be selected. The probabilities of selecting a 

source and a destination node are specified by Eq. (7.2) and Eq. (7.3), respec-
tively.  
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(7.3)

Here, iα  and oα  control preferential attachment for inlinks and outlinks.  
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The inlinks and outlinks are generated independently. To connect nodes in

oLV and
iLV , Tawde et al. use an n n× matrix, denoted M . The matrix

[ ]M i j, can be built based on page connections from the component i to the
component j (Tawde et al. 2004).

7.6 Modeling Web Communities Using Graph Grammars

In this section, we introduce another approach that attempts to model Web
communities based on the Web topological, rather than to find Web commu-
nities among Web pages (Frivolt and Bielikova 2005). Arivolt and Bieliková
explored the issue that, if Web communities exist, can we find a way to gen-
erate (model) all such possible Web communities? They used a termrewriting
system, ( )Gr R σ, , that can generate graphs based on an initial set of graphs,

σ , and a set of rewriting rules (or sometimes called production rules), R . A
rewriting rule, L R→ specifies how a node on the left, L , to be replaced by
nodes in the right site, R . The definition of such a rewriting rule is given be-
low.

Definition 7.2. (Definition 2 in (Frivolt and Bielikova 2005)) A rewriting
rule is in the form as follows:

1 1 1 2 2 2{( ) ( ) }v v p v p E
η

µ µ→ , , , , , , ,L .

Here, [0 1]ip ∈ , is the probability of mapping the node v on the left to a

node iv on the right. [0 1]iµ ∈ , is the probability of overtaking an incident

edge to the node v and iv . And, E
η

is a subset of edges such as

1 2{( ) { }}o i oi o iE v v p v v v v
η
⊂ , , | , ∈ , ,L ,

where oip is the probability of generating an edge from ov to iv .

The idea behind Definition 7.2 is to expand a node on the left side into a
graph on the right side. The graph on the right consists of a set of nodes, iv .

E
η

shows the probability of connections among the nodes in the graph to be

connected. The two parameter, [0 1]ip ∈ , and [0 1]iµ ∈ , , control how to

map the node v onto the node(s) on the right and how to connect the links.
Arivolt and Bieliková showed three rewriting rules to generate hierarchies,
bipartite graphs and cliques, and used a graph generating L-systems to expand
graphs in (Frivolt and Bielikova 2005).
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The expanding process is discussed below in brief. Based on ( )Gr R σ, , a 

graph ( )G V E, , will be expanded by applying a rewriting rule, r , in R , and 

become another graph ( )G V E′ ′ ′, . In the new graph, the set of nodes, V ′ , and 

set of edges, E′ , are formed as follows. V ′  will exclude the node v , which 
appears at the left side of the rewriting rule, r , from the set of nodes V , but 
include nodes, 1 2v v, ,L , based on the corresponding probability, 1 2p p L , 

associated with them, respectively. E′  will include all the edges in E  that 
are not incident to v , which appear at the left side of the rewriting rule, r . In 
E′ , the edges from the nodes V v−  to the newly added nodes are included, 

based on the edges in E  that are incident to the node v , and the probability 
of iµ . Also, E′  will also include new edges among the newly added nodes 

based on E
η

. The process will repeat to expand graphs.  

7.7 Geographical Scopes of Web Resources 

In this section, we introduce a novel approach to identify the geographical 
scopes of Web resources (Ding et al. 2000). The approach proposed in (Ding 
et al. 2000) is a general approach. This approach can help us to identify the 
geographical scope of a center in a Web community. Intuitively, there exists a 
geographical scope for a Web resource. For example, consider a newspaper. 
There are national newspapers, local newspapers, and newspapers for special 
interest groups. Suppose that there are Web communities on restaurants. 
When users want to find a Web site for restaurants in Hong Kong, they may 
consider which Web site they should visit first. All the existing algorithms 
like HITS or PageRank algorithms are not designed to answer the question on 
the geographical scopes of Web resources. Ding et al. defined a geographical 
scope of a Web resource as follows.  

Definition 7.3. (Definition 1 of (Ding et al. 2000)) The geographical scope of 
a Web resource w  is the geographical area that the creator of w  intends to 
reach. 

As can be seen from Definition 7.3, the geographical scope is a subjective 
matter. Ding et al. assume that there is a predefined hierarchy, L  for geo-
graphical scopes. In the hierarchy, a node l L∈  represents a geographical 
scope. The root represents the whole geographical scope. A node in the bot-
tom level of the hierarchy represents a primitive geographical scope. In a cer-
tain level i , a node represents a geographical scope which can be divided into 
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several disjoint geographical sub-scopes represented by the nodes in the next
level 1i + , given the geographical scope. The problem of finding the geo-
graphical scope becomes a problem of determining a proper node for a Web
resource in the predefined geographical hierarchy. The determination of a
geographical scope l L∈ for a given Web resource w is based on two condi-
tions, fraction and uniformity. The condition of fraction states that there are
significant Web pages in a geographical scope l containing links to w . The
condition of uniformity states that the links to w are distributed smoothly
across the geographical scope l . Several methods were studied in (Ding et al.
2000) to estimate the geographical scope of a Web resource.

7.7.1 Two Conditions: Fraction and Uniformity

The fraction and uniformity of a Web resource w in a geographical scope l
are computed as follows.

First, if a Web resource, w , belongs to a graphical scope l , then a signifi-
cant number of Web pages in l shall point to w . It is computed as a function
called Power .

( )
( )

( )

Links w l
Power w l

Pages l

,
, =

(7.4)

Here, the function ( )Links w l, returns the number of Web pages in the geo-

graphical scope l that link to w , and the function ( )Pages l returns the total

number of Web pages in the geographical scope l . As seen above, the frac-
tion is dependent on the Web pages in the geographical scope, l , including
any page exists in the scope l or any of its sub-scopes. Because it is difficult
to obtain all Web pages in any certain geographical scope, it requests to select
Web pages based on domain knowledge or some heuristics.

When the function Power returns a high rate for a Web resource w in a
geographical scope l , it does not necessarily mean that w should belong to
l . Consider that the geographical scope l has k sub-scopes, 1 2 kl l l, , ,L . It

can be the case that all Web pages linking to w reside in one sub-scope il .

Therefore, the geographical scope of w should be il or one of il ’s sub-

scope. In order to ensure the proper geographical scope for w , uniformity is
introduced to measure the notion of smooth across all sub-scopes, 1 2 kl l l, , ,L

for a Web resource w . In other words, for a Web resource w to be in a geo-
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graphical scope l , ( )il,  must be all high in all sub-scopes il , for 

1i =  to k . Ding et al. proposed a function ( )Spread w l,  to measure the uni-
formity, and three methods to compute it.  

Let the scope l  have k  sub-scopes, 1 2 kl l l, , ,L . All il  are child nodes of l

in the geographical hierarchy L . Let ( )i ip Pages l= , i iq Links w l= , , 

( )i ir Power w l= , . We show the three methods to compute Spread , namely, 

a method based on information retrieval (Eq. (7.5)), a method based on in-
formation theory (Eq. (7.6)), and a method based on relative-error (Eq. (7.7)), 
as given in (Ding et al. 2000).  
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i ii
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where 
1 1

( ) ( )
k k

i ii i
R q p

= =

= /∑ ∑ .  

Eq. (7.5) computes uniformity using the similarity as to compute the cosine 
angle between two vectors, a Pages -vector containing all ip  and a Links -

vector containing all iq . Eq. (7.6) computes the uniformity using entropy. 

The idea behind Eq. (7.6) is the maximum entropy can be obtained while ir

( ( )iPower w l, ) is uniform across all il  sub-scopes. Eq. (7.7) computes uni-

formity by measuring the relative error with a target value R .  

Algorithm 7.3 Estimate-Geographical-Scope( L , w , cτ , eτ ) 

Input: a geographical hierarchy L , a Web resource w , and two thresholds 
cτ  and eτ ;   

Output: a set of geographical scopes;  
1. CL ←∅ ;  
2. wL ←∅ ;  
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3. add l L∈ into CL following a top-down traversal order over L if
( ) cSpread w l τ, ≥ and ( ) cSpread w l τ′, < for any ancestors of l ;

4. for Cl L∈ do
5. add l into wL if ( ) ePower w l τ, ≥

6. return wL .

7.7.2 Geographical Scope Estimation

The algorithm for estimating geographical scope for a Web resource w is
outlined in Algorithm 7.3. We call it the Estimate-Geographical-Scope,
which takes four parameters, the predefined geographical hierarchy L over
which the scopes of the Web resource w in question will be determined, and
two thresholds cτ and eτ . In line (1-2), it initializes two sets, CL and EL .

The former is used to keep a set of scope candidates, and the latter is used to
keep a set of identified scopes for w to be returned. In line 3, it traverses the
geographical hierarchy L in a top-down fashion. If it finds a scope l such as

( ) cSpread w l τ, ≥ , it will add the scope l into CL , and will not continue to

traverse any descendents of l . It will visit l ’s child nodes 1l ,L , if

( ) cSpread w l τ, < . Note, if ( ) 0Power w l, = , there is no need to visit l ’s

child nodes. In line 4-5, it will further prune scopes from the set of candi-
dates, based on ( )Power w l, . Other forms of pruning strategies were also

given in (Ding et al. 2000), for example, to find top- k scopes following the
( )Power w l, .

7.8 Discovering Unexpected Information from Competitors

Web communities include fans and centers. Centers are authoritative on cer-
tain topics, and are seen as competitors sometimes. In (Liu et al. 2001), Liu,
Ma and Yu proposed approaches to discover unexpected information fromthe
competitor’s Web sites. The proposed approaches help us to further analyze
the differences between centers in a Web community. In the general, the
problem setting is as follows. Given two Web sites, bW and cW , where cW is

the Web site for the competitor, and bW is the Web site, as the basis, to find

the unexpected information from cW . The unexpected information in cW is
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the information which is relevant to bW  but is unknown. Five methods were 

proposed to compare bW  with cW  in (Liu et al. 2001).  

We introduce the five methods below. Suppose that the Web site bW  and 

cW  consist of sets of Web pages, 1 2{ }b nV b b b= , ,L  and 1 2{ }c mV c c c= , ,L , 

respectively. Consider the running example in (Liu et al. 2001) below.  

Example 7.4. Suppose there are four Web pages at the Web site bW , 

1 2 3 4{ }bV b b b b= , , ,  and there are three Web pages at the Web site cW , 

1 2 3{ }cV c c c= , , . The terms and their frequencies in the Web pages are shown 

as pairs below.  

1 {( 1) ( 1)}b data predict= , , , ,   

2 {( 2) ( 1) ( 2)}b information extraction data= , , , , , ,   

3 {( 2) ( 2)}b classify probability= , , , ,   

4 {( 2) ( 1)}b cluster segment= , , , ,   

1 {( 2) ( 2) ( 3)}c data predict classify= , , , , , ,   

2 {( 3) ( 2) ( 1)}c association mine rule= , , , , , , and   

3 {( 3) ( 2) ( 2)}c cluster segment data= , , , , , .    

The first method is to find the correspondences between Web pages cV  and 

bV , based on a similarity measure. Consider Example 7.4. The Web page 1b

has two corresponding Web pages, 1c  and 3c . The Web page 1c  is ranked 

top, because the similarity of 1b  to 1c  is higher than any other ic . The simi-

larity between 1b  and 2c  is zero, because there are no common terms used in 

both Web pages.  
The second method is to find unexpected terms in a Web page, ic , to a 

Web page, jb , provided that ic  and jb  are the corresponding Web pages 

with high similarity. The unexpectedness is computed using a function 
unexpT  for a term k .  

1 if 1
( ) j ij i k b k ck b k c

i j

tf tf tf tf
unexpT k c b

, ,, ,

− / / ≤⎧⎪
, , = ⎨

⎪⎩
, 

(7.8)
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where
jk dtf

,

is the term frequency of the term k in the document (Web page)

jd . The term k is unexpected in ic , from jb ’s viewpoint, if
j ik b k ctf tf

, ,

/ is

small. Consider 1b and 1c , which are similar because they share two terms,

data andpredict. The termclassify is in 1c but not in 1b . The unex-

pectedness of the term of classify using the function unexpT is 1.
The above two methods are used to find unexpected information based on

terms. The third method is to find if a Web page at the Web site cW is unex-

pected. In doing so, the authors in (Liu et al. 2001) consider all the Web pages
in a Web site as a single document, and compute the unexpectedness of a
term k on the Web site basis, other than the Web page basis. Let bD and cD

be two sets of terms containing all the terms at the Web sites bW and cW , re-

spectively. The unexpectedness of the term k , on the Web site basis, is
( )c bunexpT k D D, , . Suppose ic contains K terms 1 2{ }Kt t t, , ,L . The un-

expectedness of a Web page ic at the Web site cW is computed as follows:

1
( )

( )

K

i c ui
i

unexpT k D D
unexpP c

K
=

, ,

=
∑

.
(7.9)

In Example 7.4, 2c is ranked as the top unexpected Web page because

none of the terms in 2c are expected from the Web site bW .

In the third method, the unexpectedness of a Web page ic is computed

based on individual terms appearing in the Web page. The fourth method is to
find unexpected Web pages based on sets of terms. Liu et al. used association
rule mining techniques to identify sets of terms, which appear frequently in a
page, and take sets of terms instead terms to compute the unexpectedness of a
Web page. In doing so, they consider a sentence as a set of terms, and a
document as a set of such sentences. A set of terms is frequent if they together
appear in sentences more than a given threshold in a document. After finding
frequent sets of terms in individual Web pages, the unions of all such frequent
sets of terms, associated with total frequencies, at Web site bW and cW can

be obtained, denoted bS and cS , respectively. Both bS and cS serve the

same role as bD and cD used in the third method. Suppose a Web page ic
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contains L  frequent sets of terms, 1 2{ }Ll, , ,L . The unexpectedness of the 

Web page ic  in terms of frequent sets of terms is computed as follows:  

1
( )

( )

L

i c ui
i

unexpS l S S
unexpS c

L
=

, ,

=
∑

, 
(7.10)

where unexpS  can be computed in a similar way like unexpT  by treating a 
set of terms as a virtual term.  

As the last of the five methods, in (Liu et al. 2001), the authors indicated to 
use out-going links from both Web sites, bW  and cW  to find unexpected in-

formation. With a similar mechanism like crawlers, the outgoing links from 

bW  and cW can be determined up to a certain level. The differences among 

the link structures can give an indicator about the unexpectedness of links. 

7.9 Probabilistic Latent Semantic Analysis Approach 

Recently, Web usage mining is addressed for Web community analysis. Basi-
cally, there are two kinds of clustering methods in the context of Web usage 
mining, which are associated with the objects of performing: user session 
clustering and Web page clustering (Mobasher 2004). One successful applica-
tion of Web page clustering is adaptive Web site. For example, an algorithm 
called PageGather (Perkowitz and Etzioni 1998) is proposed to synthesize 
index pages that are not existing initially, based on finding Web page segment 
sharing common semantic similarities. The generated index pages are concep-
tually representing the various access tasks of Web users. Mobasher et al. 
(Mobasher et al. 2002) utilize Web user session and page clustering tech-
niques to characterize user access pattern for Web personalization based on 
Web usage mining. Generally, Web page clusters can be resulted from apply-
ing clustering process on the transpose of the session-page matrix. However, 
the conventional clustering techniques such as distance-based similarity 
methods are not capable of tackling this type high-dimensional matrix. This is 
mainly because that there is usually tens to hundreds of thousands sessions in 
Web log files. Consequently, the high computational difficulty will be in-
curred when we utilize sessions as dimensions rather than pages, on which we 
will employ clustering technique. An alternative approach for Web page clus-
tering is proposed to overcome this type clustering by (Han et al. 1998). This 
so-called Association Rule Hypergraph Partitioning (ARHP) exploits associ-
ate rule mining and graph-based technique to classify Web pages into a set of 
clusters efficiently. 
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7.9.1 Usage Data and the PLSA Model

In general, the user access interests exhibited may be reflected by the varying
degree of visits in different Web pages during one session. Thus, we can rep-
resent a user session as a weighted page vector visited by users during a pe-
riod. After data preprocessing, we can built up a page set of size n as
P={p1,p2,…,pn} and user session set of size m as S={s1,s2,…,sm}. The whole
procedures are called page identification and user sessionization respectively.
By simplifying user session in the form of page vector, each session can be
considered as an n-dimensional page vector si={ai1,ai2…,ain}, where aij de-
notes the weight for page pj in si user session.
As a result, the user session data can be generated to form Web usage data
represented by a session-page matrix SPm×n={aij}. The entry in the session-
page matrix, aij, is the weight associated with the page pj in the user session si,
which is usually determined by the number of hit or the amount time spent on
the specific page.

The PLSA model is based on a statistic model called the aspect model,
which can be utilized to identify the hidden semantic relationships among
general co-occurrence activities. Similarly, we can conceptually view theuser
sessions over Web pages space as co-occurrence activities in the context of
Web usage mining to discover the latent usage pattern. For the given aspect
model, suppose that there is a latent factor space Z={z1,z2,…,zl} and each co-
occurrence observation data (si, pj) is associated with the factor zk ∈Z by
varying degree to zk.

According to the viewpoint of aspect model, thus, it can be inferred that
there are existing different relationships among Web users or pages related to
different factors, and the factors can be considered to represent the user ac-
cess pattern. For example, for an academic Website, we can predefine that
there exist k latent factors associated with k navigational behavior patterns,
such as z1 standing for admission applying of international students, z2 for
particular interests on postgraduate programs, and z3, z4 … etc,. In this man-
ner, each usage data (si, pj) can convey the user navigational interests by
mapping the observation data into the k-dimensional latent factor space. The
degrees, to which such relationships are “explained” by each factor, are de-
rived from the factor-conditional probabilities. In (Xu et al. 2005), authors
adopt PLSAmodel to model the relationships among Web pages and reveal la-
tent semantic factors as well.

Firstly, let us introduce the following probability definitions:
• P(si) denotes the probability that a particular user session si will be ob-

served in the occurrences data,
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• P(zk|si) denotes a user session-specific probability distribution on the unob-
served class factor zk explained above,  

• P(pj|zk) denotes the class-conditional probability distribution of pages over 
the latent variable zk.  
By combining probability definition and Bayesian formula, we can model 

the probability of an observation data ( , )i js p  by adopting the latent factor 

variable kz  as: 
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Furthermore, the total likelihood of the observation is determined as: 
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where m(si,pj) is the element of the session-page matrix corresponding to 
session si and page pj. 

In order to maximize the total likelihood, we make use of Expectation 
Maximization (EM) algorithm to perform maximum likelihood estimation in 
latent variable model (Dempster et al. 1977). Generally, two steps are needed 
to implement in this algorithm alternately: the (1) Expectation (E) step, where 
posterior probabilities are calculated for the latent factors based on the current 
estimates of conditional probability; and the (2) Maximization (M) step, 
where the estimated conditional probabilities are updated and used to maxi-
mize the likelihood based on the posterior probabilities computed in the pre-
vious E-step. 

We describe the whole procedure in detail: 

1. Firstly, given the randomized initial values of P(zk), P(si|zk), P(pj|zk) 
2. Then, in the E-step, we can simply apply Bayesian formula to generate fol-

lowing variable based on usage observation: 
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(1) Furthermore, in M-step, we can compute: 
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∑
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Basically, substituting equation (7.14)-(7.16) into (7.11) and (7.12) will re-
sult in the monotonically increasing of total likelihood Li of the observation
data. The executing of E-step and M-step is repeating until Li is converging to
a local optimal limit, which means the estimated results can represent the fi-
nal probabilities of observation data.

It is easily found that the computational complexity of this algorithm is
O(mnk), where m is the number of user session, n is the number of page, and
k is the number of factors.

7.9.2 Discovering Usage-Based Web Page Categories

As discussed in last section, note that each latent factor zk do really represent
specific aspect associated with co-occurrence in nature. In other words, for
each factor, the degrees related to the co-occurrence are expressed by the fac-
tor-based probability estimates. From this viewing point, we, thus, can utilize
the class-conditional probability estimates generated by the PLSA model and
clustering algorithm to partition Web pages into various usage-based groups.

Note that the set of P(zk|pj) is conceptually representing the probability dis-
tribution over the latent factor space for a specific Web page pj, we, thus, con-
struct the page-factor matrix based on the calculated probability estimates, to
reflect the relationship between Web pages and latent factors, which is ex-
pressed as follows:
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),...,,( ,2,1, kjjjj cccvp = (7.18)

Where cj,s is the occurrence probability of page pj on factor zs. In this way, 
the distance between two page vectors may reflect the functionality similarity 
exhibited by them. We, therefore, define their similarity by applying well-
known cosine similarity as:
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With the page similarity measurement (7.19), we propose a modified k-
means clustering algorithm to partition Web pages into corresponding groups. 
The detail of the clustering algorithm is described as follows: 

Algorithm 7.4 Web Page Grouping
Input: the set of P(zk|pj), predefined threshold µ
Output: A set of Web page groups PCL = (PCL1, PCL2, …, PCLP) 

1. Select the first page p1 as the initial cluster PCL1 and the centroid of this 
cluster: PCL1={p1} and Cid1=p1. 

2. For each page pi, measure the similarity between pi and the centroid of 
each existing cluster sim(pj, Cidj)  

3. If ( ), max( ( , ))i t i j
j

sim p Cid sim p Cid µ , then insert pi into the cluster 

PCLt and update the centroid of PCLt as 

∑
∈
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where |PCLt| is the number of pages in the cluster; Otherwise, pi will cre-
ate a new cluster itself and is the centroid of the new cluster. 

4. If there are still pages to be classified into one of existing clusters or a 
page that itself is a cluster, go back to step 2 iteratively until it converges 
(i.e. all clusters’ centroid are no longer changed) 

5. Output PCL={PCLP} 

Similarly, the probabilistic distribution over the factor space of a user 
P(zk|si) can reflect the specific user’s access tendency over the whole latent 
factor space, in turn, may be utilized to uncover usage pattern. With this 
method, (Xu et al. 2005) reveals the user access patterns. 



8 Conclusions

8.1 Summary

The World Wide Web has become very popular recently and brought us a
powerful platform to disseminate and retrieve information as well as conduct
business. Nowadays the Web has been well known as a large data repository
consisting of a variety of data types and users are facing the problems of in-
formation overload and drowning due to the significant and rapid growth in
amount of information and the number of users. Moreover, Web users usually
suffer from the difficulties of finding desirable and accurate information due
to two problems: low precision and low recall caused by above the reasons.
For example, if a user wants to search desired information by utilizing a
search engine such as Google, the search engine will provide not only Web
content related to the query topic, but also a large mount of irrelevant infor-
mation. It is hard for users to obtain their exactly needed information. Thus,
the emerging of Web has put forward a great deal of challenges to Web re-
searchers for Web-based information management and Web service manage-
ment.

This book starts with introduction of some preliminary background knowl-
edge for better understanding of the succeeding chapters. Some matrix con-
cepts and theories commonly used in matrix-based analysis are presented ac-
cordingly, such as matrix eigenvalue, eigenvector; norm, singular value
decomposition (SVD) of matrix as well as similarity measure of two vectors.
In addition, graph theory basics and Markov chain. Then, this book presents
materials to show how to find useful information from Web at two levels ac-
cording to users’ interest, namely the individual Web pages and the primitive
structural behavior of Web pages.

The former is covered in Chap. 3 and Chap. 4, in which we present mate-
rial from different viewpoints on two well-known algorithms, HITS and Pag-
eRank. Chap. 3 discusses hyperlink-based algorithm, its improvements, varia-
tions, and related issues. Some in-depth analyses of HITS are presented as
well. We give the original algorithm of HITS, stability issues of HITS as well
as randomized, subspace and weighted HITS. Especially other HITS-related al-
gorithms and in-depth analysis of HITS are discussed to reveal some features
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of HITS. Chap. 4 gives the original PageRank algorithm based on hyperlink 
information. Moreover, the algorithms, such as that probabilistically com-
bines hyperlink and content information for page ranking, and accelerate Pag-
eRank computation, are also proposed. Such materials aim to provide in-
depth understanding with regarding to PageRank algorithm and its variants. 

The latter is covered in Chap. 5, Chap. 6 and Chap. 7. In Chap. 5, we pre-
sent materials on some Web community analysis approaches, particularly, we 
introduce affinity and co-citation such kinds of matrix-based methods to clus-
ter Web pages. In this chapter, the concept of similarity between two pages is 
proposed to measure the relevance distance of them, meanwhile, several simi-
larity-based algorithms are presented to discover the mutual relationships 
amongst the Web pages. In Chap. 6 and Chapter 7, we present materials on 
constructing and analyzing various Web communities. In Chap. 6, we intro-
duce Web communities as complete directed bipartite graphs the notion of 
small world, which indicates that such subgraphs do exist on Web. Algo-
rithms for finding such complete directed bipartite graphs and finding Web 
communities in arbitrary shapes are discussed sequentially. Besides, we also 
discuss the algorithms on finding connections among Web communities and 
exploring the Web community evolution patterns. Especially, a graph-
theoretical approach is introduced, which tries to answer the question when a 
found Web community can be determined as unique. 

Chap. 7 introduces techniques that explore Web communities based on user 
access patterns from Web logs with Web usage mining techniques. We dis-
cuss how to use co-occurrences to enlarge Web communities and introduce 
Web communities from a high-level Web graph where a node is a Web site 
rather than a Web page. Three approaches to model Web communities are 
presented. Finally, we introduce how to estimate the geographical scope of a 
Web site and how to discover the unexpected information from other authori-
tative Web sites as centers in Web communities. 

Informally, both Web clustering and Web communities finding are devel-
oped to find information at a level, which is higher than the level of individ-
ual Web pages.  As indicated in Chap. 5, Web clustering, as one approach, 
can assist users in finding Web communities, because the Web pages found in 
a single cluster share a high similarity. Web communities discussed in Chap. 
6 and Chap. 7, on the other hand, take different approaches. We discuss the 
differences between the two main approaches. First, Web clustering is devel-
oped on similarity measures. The Web clustering is able to distinguish hubs 
and authorities, and to distinguish fans and centers. On the other hand, such 
fans and centers are the two most important issues in Web communities to be 
distinguished. Second, Web clustering is a computationally intensive task. 
The huge amount of Web pages and the speed of information growth on the 
Web make it difficult to find all Web clusters at different granularities and to 
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evaluate the Web clusters found, even though it uses heuristics to achieve
sub-optimal solutions. The algorithms developed for finding Web communi-
ties show the attempts to find some primitive structural behaviors in Web,
such as complete directed bipartite graphs or dense directed bipartite graphs.
Finding such Web communities is still computational intensive, but is consid-
ered with less overhead. Next, we will outline some future research directions
in the area of Web communities, because it is more important to find struc-
tural behavior of Web pages.

8.2 Future Directions

The first issue is related to what we can additionally provide to users on top
of the Web communities and Web clusters found. We believe that one of the
most important areas is the applications for recommendation and personaliza-
tion design. In order to make it effective for recommendation and/or personal-
ization, in addition to the hubs (fans) and authorities (centers) found in Web
communities, users views or users access patterns need to be taken into con-
sideration entirely, where a user can be a Web designer or an end Web user.
The second issue is how we can build up recommendation systems for Web
users based on all we can possibly obtain including Web clusters, Web com-
munities, as well as users viewpoints. In the current Web recommendation
and Web mining areas, there are two intrinsic problems. One is the lack of ef-
fective approaches to incorporate both the designer’s view and user’s view
regarding the Web documents/information. The other is the lack of systematic
or automatic ways to construct user profiles and to consistently build up rela-
tionships among users and documents. Technical innovation and originality
lies in the development of new data structures and data model to incorporate
both designers and users’ views on Web information and services, and then
develop an effective approach to clustering Web information and user ses-
sions for recommendation and personalization design.

The following research questions need to be thoroughly studied and ad-
dressed in the future:
− Q1. What model is suitable for capturing the relationships between Web

documents and Web usage information?
− Q2. How do we discover Web communities and user communities based

on such a model?
− Q3. How do we make recommendations based on the Web communities

and user communities being found?
− Q4. How do we automatically build user profiles for a large number of us-

ers?



172      8 Conclusions 

− Q5. How do we make online recommendations? 
The key issue behind the above questions is to find relationships between 

the users and Web communities. There are several components, which make 
it challenging. First, user access patterns are different and can dynamically 
change from time to time. In information retrieval or database queries, there 
are 80-20 rules, which mean 80% users access 20% of information. As people 
found in user access patterns in Google, such rules may not exist due to the 
scale of information available and the large number of users from all different 
backgrounds globally. Second, Web communities are still the primitive struc-
tures to be studied. Currently, the algorithms found are more or less interested 
in the primitive structural behavior of Web pages rather than the ways users 
use them.  There are a huge number of Web communities. The relationships 
among Web communities and the ways of the links across Web communities 
need more investigations. Third, the bridge between the two gulfs, users and 
Web communities, needs to be identified. One such a common basis can be 
the content topics, because Web communities are built for certain topics and 
users are interested in certain topics. Some existing work attempted to use 
reinforcement to cluster users based on their access patterns to Web pages via 
pre-given topics, and to cluster Web pages based on the access patterns users 
access them via pre-given topics simultaneously. Due to the diversity of Web 
communities and user access patterns, we believe that the future work along 
this direction will lead better understanding of the relationships between users 
and Web communities. Fourth, time plays an important role. Web communi-
ties may emerge, merge, split and disappear and user interest may change 
from time to time and, thus, the evolving patterns and the ways the Web 
communities reconstruct themselves are unclear. 

The exploration of research experience and techniques obtained from vari-
ous disciplines, such as database, information retrieval, Web community and 
data mining, Web mining especially Web usage mining, is needed to discover 
the underlying relationships among Web communities or Web users for Web 
recommendation and Web personalization.  
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